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ABSTRACT
Conditions play an essential role in scientific observations, hypothe-

ses, and statements. Unfortunately, existing scientific knowledge

graphs (SciKGs) represent factual knowledge as a flat relational

network of concepts, as same as the KGs in general domain, with-

out considering the conditions of the facts being valid, which loses

important contexts for inference and exploration. In this work, we

propose a novel representation of SciKG, which has three layers.

The first layer has concept nodes, attribute nodes, as well as the

attaching links from attribute to concept. The second layer repre-

sents both fact tuples and condition tuples. Each tuple is a node

of the relation name, connecting to the subject and object that are

concept or attribute nodes in the first layer. The third layer has

nodes of statement sentences traceable to the original paper and

authors. Each statement node connects to a set of fact tuples and/or

condition tuples in the second layer. We design a semi-supervised

Multi-Input Multi-Output sequence labeling model that learns com-

plex dependencies between the sequence tags from multiple signals

and generates output sequences for fact and condition tuples. It has

a self-training module of multiple strategies to leverage the massive

scientific data for better performance when manual annotation is

limited. Experiments on a data set of 141M sentences show that

our model outperforms existing methods and the SciKGs we con-

structed provide a good understanding of the scientific statements.
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1 INTRODUCTION
Since search engines could no longer satisfy the needs of scientist

on exploring the literature [5], the idea of constructing scientific

knowledge graphs (SciKGs) has been recently brought into atten-

tion [4, 12, 24]. The representation of KGs in the general domain

is extended for sciences such as physics, chemistry, and biology.

For example, disease-gene associations were represented as rela-

tional links between a disease node and a gene node [16]. The KG

construction model extracts fact tuples in the format of (subject,

relation, object) from massive corpora [26] and transforms them

into links for reasoning [25, 29] and inference [2].

Conditions play an essential role in scientific statements: without

the conditions that were precisely given by scientists, the facts

might no longer be valid [14]. Unfortunately, existing SciKGs em-

ploy the same flat representation as general KGs and ignore the

conditions when being constructed from text. For example, given a

sentence below from a biomedical publication:

“During T lymphocyte activation as well as production
of cytokines, ...”

the construction models would focus on the main clause and skip

this subordinate clause that describes the specific, important condi-

tions. Therefore, a good SciKG should represent not only fact tuples
but also condition tuples.

The subjects and/or objects of the tuples in general domains

are usually named entities (e.g., “United States”, “Donald Trump”);

so the general KGs are often constructed through named entity

detection (NER) and relation extraction. However, the subjects

and/or objects in scientific statements could be either concepts or

concepts’ attributes. For example, given the following sentence:

“We observed that ... alkaline pH increases the activity
of TRPV5/V6 channels in Jurkat T cells.” [21]

existing information extraction systems would extract the following

tuple as a unit of factual knowledge in SciKG [19]:

(alkaline pH, increases, activity of TRPV5/V6 channels

in Jurkat T cells),

but this is not satisfactory, because

• the attribute “activity” of the concept “TRPV5/V6 channels”

should be explicitly given as the focus of the fact’s object;

• the condition “TRPV5/V6 channels in Jurkat T cells” of the

observation was not structured from the text.
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Figure 1: The proposed scientific knowledge graph representation has three layers: the bottom layer (right) has concept and
attribute nodes; the middle layer has (subject, predicate, object)-tuples of facts and conditions; the top layer (left) is linking to
the (conditional) statement sentences in the scientific corpora. (Best viewed in color.)

Back to the first quoted sentence, both concepts, “T lymphocyte”

and “cytokines” have their attributes (“activation” and “produc-

tion”) given in the conditional expression. So, a good SciKG should
represent not only concepts but also attributes.

In this work, we propose a novel representation for structuring

scientific statements that maintains as much information as possible

from the sentences. Each statement is represented as a set of fact

tuple(s) and/or condition tuple(s). The subject or object of the tuple

is formatted as {concept: attribute}, where the attribute can be null

if it is a concept only. For a condition tuple, the subject can be null

if it describes the mean or environment of observation rather than

a specific setting of some concept/attribute in the facts; the object

can be a concrete value in tuples such as (temperature, is, 63) and

(pH, is, 3.4). Following the proposed idea, we expect to extract

• Fact: (alkaline pH, increases, {TRPV5/V6 channels: activity});
• Condition: (TRPV5/V6 channels, in, Jurkat T cells)

from the second example. And for the first example, we would have

two condition tuples as follows:

• Condition 1: (null, during, {T lymphocyte: activation});

• Condition 2: (null, during, {cytokines: production}).
The novel tuple representation can be easily transformed into

a graphical structure. We use Figure 1 to introduce a new SciKG’s

representation. There are three layers in the knowledge graph. The

first layer consists of concept nodes, attribute nodes, as well as the

attaching links from attribute to concept (see the green and red

nodes on the right-hand). The second layer represents both fact

tuples and condition tuples. Each tuple is a node of the relation

name (e.g., “reduces”, “increases”, “in”), connecting to the subject

and object that are concept or attribute nodes in the first layer

(see the orange nodes in the middle). The third layer has nodes of

statement sentences traceable to the original paper and authors.

Each statement node connects to a set of fact tuples and/or condition

tuples in the second layer (see the blue nodes on the left-hand).

Constructing such a three-layer SciKG, or say, extracting fact

and/or condition tuples from scientific text, is non-trivial. Inspired

by [19] which transforms open information extraction as a sequence

labeling problem, we build a tag schema for our task:

Definition 1 (Tag Schema Y). Given a sentence, each token will

be assigned with a tag that represents the role of it in the tuple. The

non-“O (outside)” tags are formatted as “B/I-XYZ”, where

• B: beginning, I: inside;

• X ∈ {fact, condition};

• Y ∈ {1: subject; 2: relation; 3: object};

• Z ∈ {concept, attribute, predicate}.

(Please refer to Figure 2 for concrete examples.) The number of

unique tags is |Y| = 21. Though not big, we have three challenges:

C1: One token may have different tags in different tuples.
For example, the word “TRPV5/V6” was expected to be tagged as

both (1) the object (“B-f3c”) in the fact tuple and (2) the subject

(“B-c1c”) in the condition tuple. So, in order to generate one or

multiple tuples for each input sentence, the construction model

must be a Multi-Output sequence labeling model.

C2: Annotation is expensive and distant supervision is un-
available. It takes long for domain experts to annotate scientific

text. For news and tweets, knowledge bases (KBs) such asWikipedia

and Freebase are available for distantly labelling the named entities

and specific relations. However, KBs are not widely available for

sciences yet. It requires a design for training an effective model

with a limited amount of labels and massive unlabelled documents.

C3: Noise exists in sequence tags when being transformed
into tuple structures.Due to lack of training examples (C2), learn-

ing models can hardly secure that sequence tags are correctly posi-

tioned to composite tuple units such as concepts, attributes, subjects,

objects, and relations. It is important to de-noise the predicted tags.

To address C1–3, we propose a semi-supervised Multi-input
Multi-output (MIMO) sequence labeling model for scientific

knowledge graph construction. It has the following novel design:

First, the model adopts a multi-task scheme that simultaneously

generates tag sequences for fact tuples and condition tuples. The

subtasks share the same encoder-decoder models [13, 27, 30] but

use different linear-softmax layers for predictions.

Second, due to limited annotations, we seek for effective features.

Thanks to high efficiency and satisfactory accuracy of fundamental

NLP tasks such as Language Model (LM) [7], Part-of-Speech (POS)

tagging [9], Concept detection, Attribute discovery, and Phrase

mining (CAP) [8, 18, 24], results of each task are used as an input

sequence along with the original sentence. The model has multi-

input gates and ensembles to utilize complementary signals from

the input sequences of the upstream tasks for learning complex

dependencies between the 21 sequence tags.
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Figure 2: Our semi-supervised approach has two modules: one is a novel Multi-Input Multi-Output sequence labeling model,
the other is an iterative self-training method based on heuristic rule correction. Multi-input sequences are given at the top;
and the tag sequences are given at the bottom, which can be converted into the fact and condition tuples. (Best viewed in color.)

Third, our model has an iterative self-training module. For each

iteration of training and prediction, the highly confident predicted

tags are added into the training set to re-train the model. Multi-

ple strategies are employed to secure the quality of the extended

training sets via correcting or deleting commonly wrong patterns.

Experiments show that the proposed model improves the F1

score relatively by 33.3% and 12.5% over competitive baselines on

tag prediction and tuple extraction, respectively. The SciKG we

constructed has as many as 18.1M fact tuples, 7.5M condition tuples,

10.9M concept nodes, and 703K attribute nodes.

We highlight our contributions in this work as follows.

• A novel SciKG representation: The new structure repre-

sents facts and conditions in scientific statements. The SciKG

has three layers: statement layer, fact/condition tuple layer

and concept/attribute layer.

• A novel SciKG construction model: We propose a semi-

supervisedmulti-inputmulti-output sequence labelingmodel

for tag prediction and tuple extraction. It takes advantages

of upstream NLP techniques and the big data volume.

• Effectiveness, efficiency, and real use:The proposedmodel

outperforms baseline methods on a huge literature data. The

constructed SciKG contains millions of facts and conditions.

The rest of this paper is organized as follows. Section 2 presents

the problem definition. The proposed framework is given in Sec-

tion 3. Experimental results are provided and analyzed in Section 4.

Section 5 surveys the literature and Section 6 concludes the paper.

2 PROBLEM DEFINITION
In this section, we formally define fact tuple, condition tuple, struc-

tured statement, and the three-layer SciKG representation. Then we

introduce how the SciKG construction problem can be transformed

into a multi-output sequence labeling task.

Definition 2 (Fact Tuple and Condition Tuple). A (subject, re-

lation, object)-tuple is used to describe the relation between the

subject and the object [17]. The role of a tuple, fact or condition,

is determined based on the tuples’ semantic dependencies in the

scientific statement (which will be defined in Definition 3).

The subject/object can be either a concept or a concept’s attribute

and the relation is often a predicate. So we denote a tuple by

t = ({c1 : a1},p, {c3 : a3}), (1)

where c1, c3 ∈ {“null”} + C, p ∈ P and a1,a3 ∈ {“null”} +A. Here

C, A, and P denote the set of concepts, attributes, and predicates.

The number “1” is for subject and “3” is for object.

For fact and condition tuples, the attribute can be “null” if the sub-

ject/object is a concept only. For condition tuples, both the concept

and attribute of the subject can be “null”, if the condition describes

the mean or environment of observing/claiming the facts while

neither concept or attribute is specified for the condition. Examples

can be found at the bottom of the first page in the introduction.

Definition 3 (Structured Statement). A scientific statement sen-

tence (e.g., observation, hypothesis) is structured as a list of fact

tuples and/or condition tuples, which forms semantic dependencies

that only when the conditions exist, the facts are valid (claimed by

the source). For a statement that has n fact tuples andm condition

tuples, it can be written as

s = [t
(f )
1
, . . . , t

(f )
n ; t

(c)
1
, . . . , t

(c)
m ], (2)

where t
(f )
i (i ∈ {1, . . . ,n}) denotes the i-th fact tuple and t

(c)
j (j ∈

{1, . . . ,m}) denotes the j-th condition tuple.

Definition 4 (Three-Layer SciKG). It organizes concepts/attributes,
facts/conditions, and statements in a bottom-up manner.

A SciKG is formed as G = {L1,L2,L3,E1,2,E2,3}, where Li denotes
the i-th layer and Ei, j denotes the connections between Li and Lj .
Figure 1 can be referred to when we introduce the layout of the

SciKG, especially when the nodes are mentioned with their colors

and the edges are mentioned with their tags.

• The first layer is L1 = {C,A,EC,A }. There is a link e(c,a) ∈

EC,A (tagged as “attr.”) from the green concept node c ∈ C to the
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sequence:Input sequences:
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Figure 3: Dependencies between B-/I- tags, Concept/Attribute tags, Subject/Predicate/Object tags, and Fact/Condition tags can
be learned from the four types of input signals, being combined to model complex dependencies between the expected tags.

red attribute node a ∈ A, if a is c’s attribute. Then {c : a} might be

spot as a subject or object in the fact/condition tuples.

• The second layer is L2 = T where T is the set of all fact and

condition tuples and each of the tuples is placed as an orange node.
For a tuple t in Eq.(1), the node is tagged as p. A link e(t ,a1) ∈ E1,2
is tagged as “subj.” and a link e(t ,a3) ∈ E1,2 is tagged as “obj.” if a1
and a3 are not “null”; if one of them is “null”, the link goes to the

corresponding concept node c1 or c3.
• The third layer is L3 = S where S is the set of structured state-

ments and each is placed as a blue node. For a statement s in Eq.(2),

a link e(s, t
(f )
i ) ∈ E2,3 is tagged as “fact” and a link e(s, t

(c)
i ) ∈ E2,3

is tagged as “condition”.

Through the layout we know that the problem of SciKG con-
struction is equivalent to structuring a statement sentence into Eq.(2),
and thus equivalent to extracting every tuple as Eq.(1) from the
input sentence. Our idea is to transform the tuple extraction task

into a multi-output sequence labeling problem where the output tag

sequences will generate the tuples.

Definition 5 (Multi-Output Sequence Labeling). Given a token

sequencew = (w1, . . . ,wN ) (i.e., a statement sentence), the outputs

are multiple tag sequences, denoted by yt = (y1t , . . . ,y
N
t ) for a tuple

in the statement t ∈ s , where N is the length of the sequence and

yit ∈ Y belongs to the tag schema.

Here we provide a theorem (as well as an example) on the equiv-

alence of the problem transformation.

Theorem. Given an input token sequence w, extracting a tuple

t = ({c1 : a1},p, {c3 : a3}) is equivalent to tagging the tokens

properly as an output sequence yt , when (a) the tokens of each unit

in t can be located in w as a consecutive subsequence and (b) the

tuple’s units does not share any token.

Proof: Given constraint (a), each unit in t ,u ∈ {c1,a1,p, c3,a3} can

be denoted as = w[ju :ku ]
, where 1 ≤ ju ≤ ku ≤ N if u is not “null”.

If constraint (b) is true, we have

{ju1 , ju1 + 1, · · · ,ku1 } ∩ {ju2 , ju2 + 1, · · · ,ku2 } = ∅, (3)

∀u1,u2 ∈ {c1,a1,p, c3,a3} ∧ u1 , u2.

The strategy to generate an output tag sequence that corresponds

to the tuple (if the tuple is a fact tuple) is as follows:

• y
jc1
t = “B-f1c”, y

ja1
t = “B-f1a”, y

jp
t = “B-f2p”, y

jc3
t = “B-f3c”,

y
ja3
t = “B-f3a”;

• yit = “I-f1c” (i ∈ [jc1 + 1,kc1 ]), yit = “I-f1a” (i ∈ [ja1 + 1,ka1 ]),

yit = “I-f2p” (i ∈ [jp + 1,kp ]), yit = “I-f3c” (i ∈ [jc3 + 1,kc3 ]),

yit = “I-f3a” (i ∈ [ja3 + 1,ka3 ]);

and all other tags will be “O”; the strategy for a condition tuple is

the same except the tag difference (e.g., “B-f1c” → “B-c1c”).

An example can be found in Figure 2. Given the light blue original

token sequence at the top, the fact/condition tuples at the bottom

can be transformed into two tag sequences (dark blue and green).

In the next section, we will introduce our proposed model for

multi-output sequence labeling, while the ultimate goal is to con-

struct the novel three-layer SciKG.

3 THE PROPOSED APPROACH
Figure 2 illustrates an overview of our proposed approach. It has two

modules: one is a novel multi-input multi-output (MIMO) sequence

labeling model (on the left-hand in the middle) and the other is an

iterative self-training scheme for semi-supervised learning (on the

right-hand). In this section, we first present the encoder-decoder

model which is the core of the MIMO sequence labeling, and then

introduce the multi-output and multi-input inventions. Finally, the

self-training part will be presented in details.

3.1 Encoder-Decoder Model
We use the BiLSTM-LSTMd model that was proposed by Zheng et
al. in 2017 [30]. Such a model in an end-to-end tagging scheme has

been demonstrated to be effective on entity and relation extraction

from New York Times corpus. This model has a bidirectional LSTM

(BiLSTM) layer (the brown block in Figure 2) to encode the input

sequence and an LSTMd block as decoder layer (the dark green

block) for sequence tagging.

3.2 Multi-Output Model
We extend the well-accepted model design of sequence labeling,

which is one-input one-output, to generate multiple outputs. Each

output tag sequence corresponds to a fact/condition tuple. Here the

fact tagging and condition tagging use the same encoder-decoder

model to mutually enhance each other from the shared contexts.

They use different linear-softmax layers to predict the concrete tags

for facts and conditions, respectively. The linear layers perform a

linear transformation (ω, b) to the encoder-decoder model’s output
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B-f3c I-f3c B-f2p I-f2p I-f2p
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Flow cytometer was used to

(a) Association rule-based correction:

(“VBD”, “VBN”)→ (“B-f2p”, “I-f2p”)

B-f3c O I-f3c I-f3c I-f3c

B-f3c I-f3c I-f3c I-f3c I-f3c

human natural killer cell lines

(b) Tag consistency-based correction:

(“B”, “O”, “I”, “I”)→ (“B”, “I”, “I”, “I”)

Figure 4: Two tag correction strategies to secure the reliabil-
ity of newly tagged data for iterative self-training.

given the i-th tokenwi
:

x it (f ) = ω(f ) · Decoder (Encoder (wi )) + b(f ), (4)

x it (c ) = ω(c) · Decoder (Encoder (wi )) + b(c), (5)

where “(f)” is for fact and “(c)” for condition. The softmax layers

project x to the predict tag y with a probability:

p(yit (f ) = y) =
exp(x

i,y
t (f )

)∑
y′∈Y(f ) exp(x

i,y′

t (f )
)
, (6)

p(yit (c ) = y) =
exp(x

i,y
t (c )

)∑
y′∈Y(c ) exp(x

i,y′

t (c )
)
, (7)

where Y(f ),Y(c) ⊂ Y are subsets of tags that are related to fact or

condition only, respectively, and each has 11 tags including “O”.

3.3 Multi-Input Model
To make the model more effective on learning complex dependen-

cies between the output tags (in Y) from training sequence pairs,

instead of fully relying on word embedding, we design a multi-

input model fed with results from multiple fundamental NLP tasks.

Thanks to the availability of the tools, satisfactory performance, as

well as efficiency on large volume of text, each token has effective

and complementary features for learning the tag dependencies. The

top of Figure 2 presents four input feature sequences we use:

• Word Embedding (WE): It encodes the token’s semantics into

distributed representation by training on aggregated global

word-word co-occurrence statistics [15].

• Language Model (LM): Neural LMs learn simultaneously the

word’s feature vector and the joint probability function of

word sequences [7]. We employ the renown, bidirectional

encoder representations from Transformers (BERT) [3].

• Part-of-Speech tag (POS): It assigns a special label to each

token in a sentence to indicate grammatical categories [9].

• Concept detection, Attribute extraction, and Phrase mining
(CAP): When concepts (e.g., “TRPV5/V6 channels”) and at-

tributes (e.g., “activity”) are detected [8, 24], we assign tags

such as “B-c”, “I-c”, “B-a”, and “I-a” to their tokens and make

an input sequence of the semantic units. For the rest of the

word sequence, we use AutoPhrase [18] to find phrases that

were not determined to be concept or attribute yet. We tag

the tokens of each phrase with “B-p” and “I-p”.

Why do we employ the four input sequences? Each input se-

quence encodes a specific type of dependencies, and the final, com-

plex dependencies between the output tags are the combination of

the dependencies of all the input signals. We analyze the dependen-

cies that each input sequence contributes to the learning process as

follows. Figure 3 visualizes the idea of training a multi-input model.

• WE: It preserves the co-occurrence between two words in

a semantic context window, which would model the depen-

dencies between “B-” and “I-” output tags.

• LM: It preserves the dependencies between a token and its

predecessors in distant contexts. So, dependencies between

the subject/object and the predicate would be modeled.

• POS: It indicates syntactic patterns of the words in a sentence.
Dependencies between POS tags and output tags, like verbs

(e.g., “VBD”) and predicates (e.g., “B-f2p”), would be modeled.

• CAP : There are high dependencies between the semantic

roles and output tags. For example, the tokens of “B/I-c”

and “B/I-a” tags would have high probability of being “B/I-

XYc” and “B/I-XYa”, respectively, where “X” is for “f” act or

“c”ondition and “Y” is for “1” (subject) or “3” (object).

The input sequences include but not are not limited to the above.

CNN-based character-level vectors and dependency parsing tags

[1] can be easily incorporated into the multi-input model.

The model has two designs to effectively integrate the multiple

inputs in the learning process.

(1)Multi-input gates: It is certainly desired of investigating how

to feed the input sequences. Inspired by ResNet [6], we use a mech-

anism of multi-input gates to the encoder-decoder model. Specif-

ically, we add input gates to the following three positions of the

encoder-decoder model: the input of BiLSTM encoder, the input of

LSTMd decoder, and the linear-softmax layers. These multiple input

sequences flow through the shortcut connections to the model.

(2) Multi-input ensembles: We observe that for different sen-

tences, the input sequences may have different predictability on the

tags: For short sentences, POS and CAP are often more useful; for

long sentences, LMs play a more important role. In order to secure

the robustness of the model on any kind of statement sentences,

we apply boosting-based ensembles to combine the decisions from

each of the models trained by one of the input sequences. The final

tag predictions become more stable than simple combinations.

3.4 Securing Iterative Self-Training
To leverage the large volume of unlabeled data, we adopt the iter-

ative self-training scheme for semi-supervised learning. For each

iteration, we expand the training set by adding predicted tags on un-

labeled sentences. However, due to the noise on the newly tagged

sentences, the self-training is vulnerable for error propagation.

Therefore, we propose the following strategies to correct the pre-

dicted tags and secure the quality of training data expansion.

S1: Association rule-based correction (AR).We use association

rule mining to derive interesting rules (of high support and confi-

dence) from the training set. For example, we find that a sequential

pattern of POS tags indicates a sequential pattern of output tags:

[NNP NN VBD VBN] → [B-f1c, I-f1c, B-f2p, I-f2p]. Figure 4(a)

presents how to correct the predicted tags with the rule. The words

“flow sytometer was” matches the POS-tag pattern of the rule but

the predicted tags do not match the rule’s consequence. The tag

“B-f2p” was assigned to the later word “used”, so we use the rule to

assign “B-f2p” to “was” and rectify the tag of “used” to be “I-f2p”.
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Table 1: The proposed MIMO model outperforms existing methods in terms of Precision, Recall, and F1 scores on both se-
quence tag prediction and fact/condition tuple extraction. The results demonstrate the effectiveness of themulti-input signals
including Word Embeddings, Language Models, POS tags, and Concept-Attribute-Phrase tags. Higher score performs better.

Sequence Tag Prediction (%) Fact/Condition Tuple Extraction (%)
P R F / FFact , FCondit ion P R F / FFact , FCondit ion

Allennlp OpenIE [19] - 42.60 38.22 40.29

Stanford OpenIE [1] - - - 47.11 41.62 44.19

Structured SVM [22] 32.68 25.80 28.83 / 32.76, 24.71 47.62 46.15 46.87 / 45.01, 48.72

CRF [10] 60.07 41.92 49.37 / 56.23, 41.87 65.19 62.44 63.78 / 64.07, 63.44

WE LM POS CAP
MO ✔ 59.60 55.07 57.24 / 62.77, 51.69 65.39 65.92 65.65 / 66.52, 64.78

MIMO

✔ Bert-base [3] 61.74 53.48 57.31 / 62.97, 51.27 64.82 64.84 64.83 / 65.63, 64.02

✔ Bert-large [3] 54.54 49.43 51.86 / 59.17, 44.18 63.50 62.85 63.17 / 64.69, 61.63

✔ LSTM [20] 61.94 56.35 59.01 / 65.59, 52.36 67.74 67.92 67.83 / 68.61, 67.00

✔ ✔ 63.20 58.37 60.69 / 64.53, 56.60 68.18 68.19 68.18 / 69.70, 66.64

✔ ✔ 59.59 59.22 59.40 / 66.04, 52.68 67.07 67.32 67.19 / 68.90, 65.49

✔ LSTM [20] ✔ 63.68 58.94 61.22 / 66.70, 55.57 69.14 69.20 69.17 / 71.64, 66.68
✔ LSTM [20] ✔ 63.53 58.81 61.08 / 66.93, 55.17 68.63 68.49 68.56 / 69.90, 67.22

✔ ✔ ✔ 64.35 60.60 62.42 / 67.11, 57.63 68.58 68.81 68.69 / 69.91, 67.47

✔ LSTM [20] ✔ ✔ 65.09 60.24 62.57 / 68.23, 56.83 69.51 70.10 69.80 / 71.53, 68.06

S2: Tag consistency correction (TC) and deletion (TCDEL).
Figure 4(b) presents how to correct a tag based on the assumption

of tag consistency. Given the predicted tag sequence [B-f3c, O, I-f3c,

I-f3c, I-f3c], we are highly confident that the word “natural” should

not be tagged as “O” but an “I-f3c” because the tag sequence will

be valid to generate a concept in the object of a fact tuple. Another

option is to delete the predicted example instead of correcting the

tags when tag consistency is violated.

S3: Short sentence only (SH). This is a strategy of example se-

lection, not correction. Predictions on short sentences are more

reliable than those on long sentences, when being added into the

training set for further model training.

S4: Deleting incomplete sequence (DEL). This is also for exam-

ple selection. Some tag sequences suffer from incompleteness, for

example, they may miss the subject, or object, or relation to formu-

late a complete tuple. We drop these examples for self-training.

4 EXPERIMENTS
In this section, we first introduce the dataset and experimental

settings. Then we present experimental results of tag prediction

and tuple extraction. Finally, we give case studies on the SciKG.

4.1 A Scientific Text Dataset
Our dataset has 140.9 million sentences from the abstracts of 15.5

million articles on MEDLINE
1
(a life science and biomedical lit-

erature database). We recruited domain experts to annotate facts

and conditions on 31 randomly selected documents (336 sentences,

8,048 tokens). The final annotated dataset contains 756 fact tuples

and 654 condition tuples.

4.2 Experimental Settings
4.2.1 Validation Settings. The annotated sentences were randomly

divided into a training set (60%, 201 sentences), a validation set

1
https://www.nlm.nih.gov/databases/download/pubmed_medline.html

(8%, 27 sentences), and an evaluation set (32%, 108 sentences). The

evaluation contains 242 fact tuples and 209 condition tuples (on

average) as ground truth. We repeat it 5 times, conduct experiments

for each, and report the average results.

4.2.2 Competitive Methods. We compare our proposed approach

with two lines of methods: one is statistical methods for sequence

labeling, including:

• Structured Support Vector Machine (SVM) [22]: It is an SVM-

HMM sequence tagging algorithm that can handle tagging

problems with millions of words and millions of features;

• Conditional random field (CRF) [10]: It is a type of probabilis-
tic graphical model that can be used to model sequential

data, such as labels of words in a sentence;

the other line is OpenIE systems that extract (subject, relation,

object)-tuples without considering attributes or conditions:

• AllenNLP OpenIE [19]: It is the state-of-the-art supervised

OpenIE system which uses a deep sequence labeling model

to extract a list of propositions, each composed of a single

predicate and arguments.

• Stanford OpenIE [1]: It splits each sentence into a set of

entailed clauses. Each clause is then maximally shortened,

producing a set of entailed shorter sentence fragments. These

fragments are then segmented into OpenIE triples.

We implement the proposed approach with different settings to

evaluate the effectiveness:

• MO vsMIMO: Multi-output sequence labeling is the essential

feature of the task for fact/condition tuple extraction. Using

one ormultiple input sequences is optional.MO uses only the

word sequence (with embeddings) and MIMO has multiple.

• Four input sequences: WE, LM, POS, and CAP. We compare

models that use two, three, or all the sequences as input to

demonstrate the effectiveness of the multi-input idea.

• For each model setting, we investigated the settings of multi-

input gates and reported the best for sake of space.
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Table 2: The semi-supervised MIMO achieves higher scores (on Precision, Recall, and F1) than the model w/o self-training.
Results are given at the best combinations of heuristic rules applied for each multi-input setting. We find that the association
rules (AR) and confident short sentence only (SH) are the most effective strategies. Higher score means better performance.

Multi-input signals Self-training strategies Sequence Tag Prediction (%) Fact/Condition Tuple Extraction (%)
WE LM POS CAP AR TC TCDEL SH DEL P R F / FFact , FCondit ion P R F / FFact , FCondit ion

MO ✔ ✗ ✔ ✗ ✔ ✗ 61.01 58.05 59.49 / 64.76, 54.19 65.99 66.34 66.16 / 66.75, 65.57

MIMO

✔ ✔ ✔ ✗ ✗ ✔ ✗ 63.07 61.61 62.33 / 67.49, 57.16 69.05 69.16 69.11 / 70.41, 67.80

✔ ✔ ✔ ✔ ✗ ✔ ✗ 64.47 63.38 63.92 / 68.65, 59.17 70.23 71.77 70.99 / 71.89, 70.08
✔ ✔ ✔ ✗ ✔ ✔ ✗ 64.32 62.27 63.27 / 67.59, 58.92 66.95 68.72 67.82 / 69.01, 66.62

✔ ✔ ✔ ✔ ✔ ✗ ✔ ✗ 62.58 65.98 64.23 / 69.37, 59.08 69.05 70.95 69.99 / 71.75, 68.22

✔ ✔ ✔ ✔ ✗ ✔ ✔ ✔ 63.10 65.60 64.32 / 69.79, 58.84 68.38 70.38 69.37 / 71.23, 67.50

✔ ✔ ✔ ✔ ✗ ✔ ✔ ✗ 64.07 64.82 64.44 / 69.28, 59.56 68.81 71.31 70.04 / 71.91, 68.16

✔ ✔ ✔ ✔ ✔ ✔ ✗ ✔ ✔ 67.37 64.36 65.82 / 70.23, 61.40 71.42 72.08 71.75 / 73.56, 69.94

• Self-training and strategies (AR, TC, TCDEL, SH, and DEL):
Note that the strategies can be applied at the same time. So

we investigate all the combinations of the strategies for each

multi-input setting. We report which strategies are widely

applied and demonstrated to be effective (see Table 2).

4.2.3 Evaluation Methods. We evaluate the above methods on two

tasks: (1) sequence tag prediction and (2) tuple extraction. The

first task is actually 21-class classification (because the size of tag

schema Y = 21). For the second, because it might be too difficult

to capture the entire tuple, we evaluated the accuracy at the level

of the tuple units (including concepts, attributes, and predicates).

For both tasks, we use the standard metrics, precision (P), recall
(R) and F1 score (F) to measure the performances.

4.3 Results on Tag Prediction and
Fact/Condition Tuple Extraction

In this section, we first compare theMIMOmodel (w/o self-training)

of different input settings with baseline methods to demonstrate the

effectiveness of (a) the multi-output design and (b) the multi-input

design. Table 1 presents the results on the tasks of tag prediction

and tuple extraction. Second, we compare the MIMO models that

have or do not have the iterative self-training module to demon-

strate the effectiveness of (c) the semi-supervised training idea.

Table 2 presents the corresponding results. Figure 5 summarizes

the comparisons using P-R curve and bar charts.

4.3.1 Effectiveness of Multi-Output Encoder-Decoder Model. As
shown in Table 1, the multi-output model (MO) performs better

than Structured SVM, CRF, and OpenIE systems. We have three

observations. First, CRF is the best baseline in the tasks because it

models distant dependencies among the tags. Second, it improves

the F1 score relatively by 15.9% and 2.9% over CRF on tag prediction

and tuple extraction, respectively. MO outperforms the traditional

statistical methods in the proposed task. Third, MO improves the

F1 score relatively by 48.6% over the Stanford OpenIE on tuple unit

prediction. It is necessary to consider conditions when structuring

the statement sentences.

4.3.2 Effectiveness of Leveraging Multiple Input Sequences from
Up-Stream NLP Tasks. Generally, the MIMO model that uses all

the input sequences (i.e., LM, POS, and CAP) can improve the MO

model (a) relatively by 9.2% on precision, 9.4% on recall, and 9.3%

on F1 score for predicting the tags, and (b) relatively by 6.3% on

precision, 6.3% on recall, and 6.3% on F1 score for extracting tuple

units. We analyze the usefulness of each type of input sequences.

Usefulness of LM: From Table 1 we have two observations: (1)

for the models that have used POS, or CAP, or both, incorporating

the LM sequence will consistently improve the F1 scores on both

tag prediction and tuple extraction tasks; (2) the MIMO that uses

WE and LSTM-based LM [20] performs better than the one uses

WE only, however, neither Bert-base nor Bert-large can improve

the scores though they have been renown for the excellent perfor-

mances on a wide range of NLP tasks [3]. Unfortunately, we did

not have strong computational resources to support re-train Bert

on the massive scientific corpus. We directly applied the Bert LMs

that were trained by Google on general domains and find that the

performance would not be satisfactory, which shows the significant

difference between the text domains.

Usefulness of POS: Two observations: (1) for the models that

have used LM, or CAP, or both, incorporating the POS tag sequence

consistently improves the F1 scores; (2) the MIMO that usesWE and

POS improves the F1 score relatively by 6.0% on tag prediction and

by 3.9% on tuple extraction. We conclude that POS tags are useful

for recognizing long multi-word concepts in the subjects/objects as

well as the condition roles of tuples.

Usefulness of CAP: Table 1 shows the improvement contributed

by CAP tag sequences. Given the above example, the CAP seq. is

[...O B-a O B-p I-p I-p I-p O B-c I-c B-a...].

First, the concept “T cell” and attribute “activation”, expected to

be tagged as “[B-c3c I-c3c]” and “[B-c3a]” eventually, have been

tagged as “[B-c I-c]” and “[B-a]” by concept and attribute extraction

techniques. Second, though “oral epithelial cell-derived cytokines”

was not able to be tagged as a concept, it has been recognized as a

multi-word phrase. And the sequence labeling model will learn the

dependencies between phrases and potential concept-related tags.

Challenges of recognizing conditions: Generally, the F1 scores on
predicting condition tags are lower than those on predicting fact

tags. For example, the F1 score of predicting the tag “B-c1c” is only

55–58%, while the score of predicting “B-f1c” achieves up to 75%.

Recognizing the subject role in a condition needs more information

than recognizing that in a fact claim. It requires modeling of global

semantic dependencies in the sentence.

4.3.3 Effectiveness of Semi-Supervised Iterative Self-Training. We

retrain the MIMO models through 5 iterations. As shown in Table 2,

we report the best combination of the strategies. For the MIMO
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Figure 5: Visualizing performance comparison of competi-
tive methods on (a) tag prediction and (b) tuple extraction.

that uses all the four types of input sequences, this semi-supervised

design improves Precision from 65.09 to 67.37, Recall from 60.24

to 64.36, and F1 score from 62.57 to 65.82, on tag prediction; and it

improves Precision from 69.51 to 71.42, Recall from 70.10 to 72.08,

and F1 score from 69.80 to 71.75, on tuple unit extraction.

We have two observations: First, with iterative self-training, the

F1 scores of MIMOs were improved relatively by 3.2–6.5% on tag

prediction but only 0.8–4.1% on tuple unit extraction. The tuple’s

unit would be evaluated as correct only when every token’s tag

was correctly recognized. So, tuple unit extraction is difficult to

improve by self-training, without a large volume of labelled data.

Second, we find that association rule-based correction (AR) and

short sentence only selection (SH) are the most effective strategies:

All the MIMO models choose to apply these two strategies.

The association rules have two categories: The left-hand-side are

sequential patterns of either POS or CAP tag sequence; the right-

hand-side are sequential patterns of final tags. We find from the

predictions that the CAP-related patterns are often well learned,

while the POS tags may still be useful for correcting the newly

expanded training set.

SH discarded the sentences whose number of tokens tagged as

“O” was above a pre-defined parameter. Only partial information

might be recognized by the sequence labeling model. So if put into

the training set, they would reduce the model’s recall.

We observe from Table 2 that both correction and selection strate-

gies are meaningful. The correction strategies are able to generate

correctly labeled, unseen examples. The selection strategies are

useful for reducing the amount of noise in the newly labeled data.

Summary of performance comparisons: Figure 5(a) and (b)

agree at the point that (1) MO performs better than CRF/OpenIE, (2)

Multi-input MO performs better than MO, and (3) semi-supervised

MIMO performs better than MIMO w/o self-training.
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Figure 6: Our knowledge graph provides a visualized, com-
prehensive understanding of what increased/reduced “apop-
tosis” under what kind of conditions.

4.4 Efficiency and Case Study on SciKG
Efficiency: Our experiments were conducted with 28 GPU cards

(GeForce GTX 1080 Ti) parallel computing. We ran 1,000 epochs

for training and 5 iterations of self-training, which took 20.8 hours.

Given the 20.4GB corpus data, it took 5.7 hours to extract all the

fact/condition tuples for SciKG construction.

Case study: Suppose we are interested in what increased/decreased
“apoptosis”. The SciKG provides us a snapshot in Figure 6. We con-

clude that (1) “OGD exposure” and the “RNAi-mediated knockdown”

of “INHBB” increased apoptosis, and (2) the “inhibition” of “cal-

cium influx” and “pre-ischemic exercise” reduced apoptosis with

the left side of the figure. However, it is important to be aware of

the condition for each factual claim on the right side of the figure.

They describe either the methodology of the observation (e.g., “in”,

“via”) or the context of it (e.g., “in” a specific cell or “via” a specific

regulation). This SciKG will enable effective scientific knowledge

inference and reasoning.

5 RELATEDWORK
In this section, we review the literature in three related topics:

SciKG, OpenIE, and Sequence Labeling.We point out the uniqueness

of our proposed approach compared to each.

Scientific Knowledge Graphs: SciKGs have been constructed

broadly in sciences such as biomedicine [16] and computer sci-

ence [12, 28]. Life-iNet [16] consists of life-science domain con-

cepts (e.g. genes, diseases and drugs) and their relationships such

as “may treat” between diseases and drugs. However, the edges

of the graph represent co-occurrence of two concepts instead of

concrete relation. Luan et al. [12] constructed a large-scale SciKG

of computer science in which the nodes are domain concepts (e.g.

methods, metrics and datasets) and edges are their relations(e.g.

“used for”, “evaluated by”), requiring a pre-defined relation schema.

However, these existing SciKGs employ the same flat representation

as general KGs and ignore the conditions when being constructed

from text. Our proposed a three-layer SciKG that contains scientific

facts as well as conditions of the facts being observed and valid.

OpenIE Systems: OpenIE systems are proposed to extend infor-

mation extraction to open domains without requiring any relation-

specific schema in advance [1, 11, 19, 23]. Fact tuple, i.e. (subject,

relation, object), is the main extraction unit of OpenIE systems. Dis-

tant supervision has been used in early systems due to the lack of

standard benchmarks. Current systems prefer to apply rule-based

techniques to extract fact tuples [1]. Stanovsky et al. [19] obtained
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labeled OpenIE data from semantic role labeling, making supervised

neural sequence labeling possible for OpenIE. Our representation

of scientific statement sentences is different including modeling

attributes and condition tuples.

Sequence Labeling: Neural networks have been applied to se-

quence labeling tasks with more promising performance than tradi-

tional statistical methods. Neural encoder-decoder model is one of

the paradigms [13, 27, 30]. Ma et al. [13] combined CNNs-encoded

character-level and word-level representations into BiLSTM to

model contextual information of each word following a CRF to

decode labels for the whole sentence. Yang et al. [27] leveraged
continuous representations of KBs to enhance LSTM for sequence

labeling. Zheng et al. [30] proposed BiLSTM-LSTMd which con-

tains a BiLSTM as encoder and a new LSTM-decoder (LSTMd) as

decoder. BiLSTM-LSTMd outperformed previous models on entity

and relation extraction tasks [30]. We use BiLSTM-LSTMd for the

sequence labeling module in our approach.

6 CONCLUSIONS
In this work, we proposed a novel representation of SciKG with

the role of condition. The SciKG had three layers: concept/attribute

nodes, fact/condition tuples and statement nodes. Inspired by a

recent work that considers open information extraction as a se-

quence labeling task, we proposed a semi-supervised Multi-Input

Multi-Output (MIMO) sequence labeling model that learned com-

plex dependencies between the sequence tags from multiple signals

to generate output sequences for fact/condition tuples. Experiments

showed that our model outperformed existing methods.
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