
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

A Synergistic Approach for Graph Anomaly
Detection With Pattern Mining and

Feature Learning
Tong Zhao , Tianwen Jiang , Neil Shah, and Meng Jiang

Abstract— Detecting anomalies on graph data has two types of
methods. One is pattern mining that discovers strange structures
globally such as quasi-cliques, bipartite cores, or dense blocks in
the graph’s adjacency matrix. The other is feature learning that
mainly uses graph neural networks (GNNs) to aggregate informa-
tion from local neighborhood into node representations. However,
there is a lack of study that utilizes both the global and local infor-
mation for graph anomaly detection. In this article, we propose a
synergistic approach that leverages pattern mining to inform the
GNN algorithms on how to aggregate local information through
connections to capture the global patterns. Specifically, it uses a
GNN encoder to perform feature aggregation, and the pattern
mining algorithms supervise the GNN training process through
a novel loss function. We provide theoretical analysis on the
effectiveness of the loss function, as well as empirical analysis on
the proposed approach across a variety of GNN algorithms and
pattern mining methods. Experiments on real-world data show
that the synergistic approach performs significantly better than
existing graph anomaly detection methods.

Index Terms— Graph anomaly detection, graph neural
network (GNN), graph pattern mining, unsupervised learning.

I. INTRODUCTION

ANOMALY detection on large-scale bipartite graphs is
an important task in many real-world applications. Take

social networks as an example: malicious users such as
social bots, spammers, and fake reviewers are severely affect-
ing customer experiences on the platforms, where we have
“who-follows-whom” and “who-posts/reviews-what” bipar-
tite graphs. To automatically learn node features for the
downstream tasks of graph anomaly detection, graph neural
networks (GNNs) have been recognized for their abilities
of aggregating attributed information from local neighbor-
hood [1]. Usually, the models aggregate feature information
from nodes in local neighborhood through two to four layers

Manuscript received November 30, 2020; revised April 6, 2021; accepted
July 31, 2021. This work was supported in part by Snap Research Fellow-
ship and in part by the National Science Foundation (NSF) under Grant
IIS-1849816 and Grant CCF-1901059. (Corresponding author: Meng Jiang.)

Tong Zhao and Meng Jiang are with the Department of Computer Science
and Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
(e-mail: tzhao2@nd.edu; mjiang2@nd.edu).

Tianwen Jiang is with the Research Center for Social Computing and
Information Retrieval, Harbin Institute of Technology, Harbin 150001, China
(e-mail: twjiang@ir.hit.edu.cn).

Neil Shah is with Snap Research at Snap Inc., Seattle, WA 98121 USA
(e-mail: nshah@snap.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3102609.

Digital Object Identifier 10.1109/TNNLS.2021.3102609

(i.e., the number of hops of the neighborhood). If the graph
data have a large scale, people are interested in learning a
great number of node features in an unsupervised manner so
that they can be used to train simple classifiers very quickly
for any type of anomaly detection tasks when some ad hoc
labels become available. So, to train GNN model parameters
without node labels, random walk (RW) algorithms discover a
specific global property, i.e., whether two nodes are connected
within a random-walk distance that forms RW-based loss on
the generated features from the last GNN layer [2]–[4].

However, we find that existing GNN-based models perform
poorly on benchmarks in the task of graph anomaly detec-
tion. The reason is that graph anomalies do not have the
aforementioned RW-based global property. In other words,
nodes of the same class might not be closer in the graph
than those of different classes. For example, the individual
anomalies (e.g., fake reviewers) are not likely to be connected
nor have common neighbors. They share global properties of
being outliers (away from the majority) on the graph. Another
example is that when a graph has multiple groups of anomalies
(e.g., social botnet groups), the nodes in different groups do
not have to be connected while having similar global properties
of creating unexpected density. How to effectively train GNNs
for graph anomaly detection on bipartite graphs by capturing
proper global properties is important and nontrivial.

On the other hand, many graph pattern mining algo-
rithms [5]–[8] have been designed for graph anomaly detection
on bipartite graphs in the past few decades. These methods
capture the global structural patterns to identify abnormal
node groups from the graph. For example, Akoglu et al. [9]
and Rayana and Akoglu [8] proposed efficient algorithms
to detect graph anomalies by measuring the distance of
their behavioral patterns from the patterns of the majority.
Jiang et al. [10], [11] and Hooi et al. [5] identified botnets
by measuring the unexpectedness of dense bipartite cores and
greedily looking for them. However, these algorithms ignore
node individual identity and feature information, assuming all
the nodes in a group must have the same characteristics and
the same label.

Designing a GNN-based representation learning method for
graph anomaly detection is a nontrivial task, because the
method, after being sufficiently trained, is expected to generate
node representations, which can accurately predict minority
groups (e.g., outliers) from class-imbalanced data [12]. Com-
pared with the node population of the entire graph, graph

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7660-1732
https://orcid.org/0000-0001-6276-7678
https://orcid.org/0000-0002-3009-519X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Overview of the proposed PAMFUL framework: the pattern mining-based graph anomaly detection algorithm uses graph structural data to produce
one-hot pattern features of each node, i.e., which global structures (e.g., individual/group anomalies in the graph) the node belongs to. The feature learning-based
GNN encoder takes both the graph structure and raw attributes as input and generates low-dimensional representations for each node. During training, a margin
loss based on the identified global structures is used to supervise the GNN encoder, with positive and negative pair-wise samples from the pattern features.

anomalies (e.g., fake reviewers, botnet accounts) are the
minority. Such severe imbalance is detrimental to model
performance: when representations were not properly trained,
the models would over-fit on the minority classes and would
perform poorly on test/unseen data [12]. Imbalanced machine
learning has been studied from many perspectives [13], [14];
nevertheless, to the best of our knowledge, the research
problem of reducing predictive error on imbalanced data for
unsupervised graph representation learning is barely studied.

In this article, we evaluate node pair-wise similarity using
the global structural patterns discovered by pattern mining
algorithms, and we present a novel synergistic representation
learning approach that combines Pattern Mining and Feature
Learning (PAMFUL) for graph anomaly detection. Fig. 1 shows
the overview of the proposed PAMFUL framework. PAMFUL

takes the graph structure with raw node attributes as input
and generates node representations. PAMFUL contains three
components: 1) GNN encoder as a feature learning method
that generates node representations from the attributed graph;
2) a pattern mining-based graph anomaly detection algorithm
that learns the global patterns from the graph structure; and
3) an error-bounded distribution-aware margin loss function to
train the GNN encoder based on the output of both the GNN
encoder and pattern mining algorithms.

With the above-mentioned design, PAMFUL can effectively
incorporate the global patterns learned by pattern mining
algorithms into the feature learning process of the GNN
encoder. By supervising the GNN encoder with global struc-
tural information, the learned node representations will contain
not only local aggregated information but also global patterns
from the supervisory signals. Therefore, the representations
learned by PAMFUL will take advantage of both the local and
global contexts for effective graph anomaly detection.

Our proposed PAMFUL does not have restrictions on the
choice of GNN encoder or pattern mining algorithm. Any
type of existing GNN architecture (e.g., graph convolutional
network (GCN) [1], graph attentional network (GAT) [15],
GRAPHSAGE [2]) can be used as the GNN encoder, and
any unsupervised graph anomaly detection method can serve
as the pattern mining algorithm (e.g., individual anomaly

detection methods [9], [16] and group anomaly detection meth-
ods [5], [11]). Moreover, during the training process, PAMFUL

encourages large margins for minority classes. It learns proper
margins from the global imbalanced data distribution discov-
ered by pattern mining algorithms. So, it generalizes well on
predicting minority classes. Theoretically, we obtain and prove
the bound on the prediction error.

The important features of PAMFUL, which are also the main
contributions of this work, are summarized as follows.

1) Effectiveness: PAMFUL captures global structural pat-
terns when the assumption of RW fails in measuring
node similarities for anomaly detection. Experiments
on two real-world datasets, aiming at detecting two
different kinds of anomalies, demonstrate that any GNN
algorithm trained in PAMFUL can perform significantly
better than existing methods.

2) Generalizability: PAMFUL variants can be applied to
train any arbitrary graph neural algorithm. They include
loss functions for different global patterns, aiming at
different tasks of graph anomaly detection such as indi-
vidual anomaly detection and group anomaly detection.

3) Theoretical Guaranteed Performance: PAMFUL creates
a better generalization on patterns of minority groups
than existing methods. It maintains a bounded test
prediction error on imbalanced data.

II. PROPOSED METHOD

In this section, we first formally define our research prob-
lem in Section II-A. Then we present our specific design
of the main components of our proposed framework (as
shown in Fig. 1): feature learning-based GNN encoders
(Section II-B), pattern mining-based graph anomaly detec-
tion algorithms (Section II-C), and positive/negative sampling
strategies with an error-bounded loss function that combines
the two types of methods (Section II-D).

A. Problem Definition

The goal of our approach is to learn low-dimensional
representations of user nodes on a bipartite graph for detecting
anomalous users. Suppose that U is the set of users, V is the

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: SYNERGISTIC APPROACH FOR GRAPH ANOMALY DETECTION 3

set of items (e.g., products, hashtags), and R = {ru,v |u ∈
U, v ∈ V}, where ru,v denotes the weight of the edge between
node u and node v. ru,v = 0 indicates that u and v are not
connected. If the graph is unweighted, ru,v = 1 when the two
nodes are connected. So, the problem is defined as follows:

Given a bipartite graph G = (U,V,R) and a set of user’s
node feature vectors {xu ∈ R

dx ,∀u ∈ U} (where dx is the
dimension of raw features), find a mapping function of the
representations of user nodes f : u ∈ U → zu ∈ R

d , where
d is the number of latent dimensions in user embeddings.
We expect the user representations are optimized for the task
of anomaly detection by preserving both user’s node attribute
information and proper global properties.

B. Bipartite GNN Encoder

For the feature learning part of the framework, we use
GNN encoders to learn node representations from the local
neighborhoods. For homogeneous graphs, the aggregations of
GNNs are rather straightforward. GNNs generate embeddings
of a node by aggregating the embeddings from nodes in its
local neighborhood. The assumption is that neighboring nodes
have related information and/or similar characteristics.

However, when working with bipartite graphs, this assump-
tion does not hold as neighbors are different types of nodes.
Without losing the generalizability of bipartite graphs, we take
rating behaviors as an example. At each iteration of generating
embeddings of a user, rather than aggregating item embeddings
to the user, we aggregate information from other user nodes
that have corated items (i.e., common neighboring items)
to avoid mixing the representations of different types of
nodes. Because of the large number of 2-hop neighbors (users
with corated items), we use the (dis)similarity of behavioral
patterns between users to prioritize the users during the
aggregation process. Hence, the user–user similarity function
simi(u, u′) would play an essential role in the embedding
aggregation process on a bipartite graph. We use two user
similarity measures that have been applied in user-based
collaborative filtering (CF) techniques. Here, we denote Vu,u′

for the set of corated items by u and u′: Vu,u′ = {v ∈ V|ru,v >
0, ru′,v > 0}.

1) Pearson Correlation Coefficient (PCC) [17]: It measures
the covariance of the relative rating distributions of two
users u and u′ divided by the product of their standard
deviations. The relative rating is the actual rating ru,v

minus the average rating of user u: ru,v − r̄u , where u’s
average rating is

r̄u =
∑

v∈V ru,v∣∣{v ∈ V|ru,v > 0
}∣∣ . (1)

Then, we have the PCC-based user–user similarity

simi
(
u, u′
)PCC

=
∑

v∈Vu,u′
(
ru,v − r̄u

)(
ru′,v − r̄u′

)
√∑

v∈Vu,u′
(
ru,v − r̄u

)2∑
v∈Vu,u′

(
ru′,v − r̄u′

)2 . (2)

2) Cosine Similarity (COS): It measures the similarity
between the rating distributions of u and u′ in an inner

Algorithm 1 Collaborative Aggregation on GSAGE
Input : Bipartite graph G(U,V,R); raw features

{xu,∀u ∈ U}; depth K ; weight matrices Wk and
aggregator functions AGGk , ∀k ∈ {1, . . . , K };
neighborhood functions NV and NU ; size of the
set of “important” users S by importance
sampling; size of the set of users Simp for
sampling; a user similarity function simi:
U × U → [−1, 1].

Output: Low-dimensional representations zu for all
u ∈ U .

1 for u ∈ U do
2 N imp

u ← top Simp users who has most corated items
with u;

3 end
4 h0

u ← xu,∀u ∈ U ;
5 for k = 1, . . . , K do
6 for u ∈ U do
7 N k

u ← uniformly sample S nodes from N imp
u ;

8 hk
Nu
← AGGk({hk−1

u′ · simi(u, u′)|u′ �= u, u′ ∈ N k
u );

9 hk
u ← ELU(Wk · CONCAT(hk−1

u , hk
Nu

));
10 end
11 hk

u ← hk
u/‖hk

u‖2,∀u ∈ U ;
12 end
13 zu ← hK

u ,∀u ∈ U ;

product space

simi
(
u, u′
)COS =

∑
v∈V ru,v · ru′,v√∑

v∈V r2
u,v

∑
v∈V r2

u′,v

. (3)

Note that the range of the similarity measures are
different: simi(u, u′)PCC ∈ [−1, 1] and simi(u, u′)COS ∈
[0, 1].

Algorithm 1 takes graph’s sampling-and-aggregation
embedding (GSAGE) [2] as an example to describe the
collaborative aggregation process on bipartite graphs. Inputs
are the bipartite graph G(U,V,R) and the raw features for
each node {xu,∀u ∈ U}. For each user node u, we first get
a set of “important” users N imp

u who have the most corated
items with u. The rest of the aggregation process generally
follows the standard message passing-based GNNs [1],
[2], [15]. In each GNN layer, we use the user similarity
simi(u, u′) as weight when aggregating the neighbor features
and exponential linear unit (ELU) as the nonlinearity function
to preserve the possible negative features because of negative
similarity scores. The similarity scores are not used when
GAT [15] is used as the GNN encoder, as the learned edge
attention scores act as weights during aggregation. Note that
our proposed framework PAMFUL can be easily generalized
to conventional graphs by substituting the bipartite GNN
encoder described in this section with traditional GNNs
which are designed for homogeneous graphs.

Complexity Analysis: The per-batch space and time com-
plexity is O(SK ), where K is the number of depth in search for
aggregation and S is the maximum size of sampled neighbor

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

users set Nu for each user u. As S is often a reasonable number
(e.g., 100) and K is small (i.e., 2 or 3), the complexity is sim-
ilar with existing GNNs with mini-batch [2] and reasonable.

C. Pattern Mining Algorithms

For graph pattern mining algorithms, we use unsupervised
graph-based individual anomaly detection [7], [16] and group
anomaly detection [5], [11] algorithms. These algorithms take
the graph structure as input and output the global pattern
role of each user nodes. Fig. 2 illustrates the two types of
anomalies.

1) Individual Anomaly Detection Algorithms: assign binary
labels to nodes unsupervisedly for the given graph. Here,
we denote the output of these algorithms as a binary matrix
P ∈ {0, 1}|U |×2, where each line of P is a one-hot vector
indicating the predicted label of a user. For example, if user ui

is predicted as an anomaly by the algorithm, then the i th row
of P would be Pi = [1, 0]. Following are the three categories
of the algorithms.

1) Feature-Based Graph Anomaly Detection: These meth-
ods define the suspiciousness score of node u based on
a pair of its particular features au and bu [6], [11]

suspiciousness(u) = |bu − b̂u| or
max
(
bu, b̂u

)
min
(
bu, b̂u

)
· log
(|bu − b̂u| + 1

)
(4)

where b̂u is the predicted feature value based on the
observed au . Intuitively, the measure is the “distance
to fitting line (a, b).” Akoglu et al. [6] adopted four
basic features such as number of neighbors, number
of edges, total weight, and principal eigenvalue of the
weighted adjacency matrix. Power laws were observed
between the features with a large population of nodes
(i.e., bu ∝ au

γ , γ is a constant). Big distance to
the power-law fitting line indicates the role of graph
anomalies. Jiang et al. [11] proposed two high-order
features: one is called synchronicity, which describes
how similar a node’s neighbors are with each other in
the space of basic features (e.g., degree, PageRank); the
other is called normality that describes how similar the
neighbor nodes are with every node in the space. They
found the synchronicity had a parabolic lower limit of
the normality (i.e., syncu ∝ α · normu

2 + β, α and
β are constants) and designed a suspiciousness scoring
function to catch the suspicious nodes. Big synchronicity
and small normality indicate suspiciousness.

2) Structure-Based Graph Anomaly Detection: These meth-
ods define the suspiciousness score using the graph
structure. They assume that the majority of users have
low suspiciousness score. Then users with high suspi-
ciousness scores can be reported as anomalies [16]

suspiciousness(u)

= 1−
∑

v∈NV (u) R̂(u, v) + α1 · μ f + α2 ·∏U (u)

|NV(u)| + α1 + α2
(5)

where R̂(u, v) is the normality score of the rating from
u to item v, μ f is the prior belief of u’s normality

Fig. 2. Example of reordered adjacency matrices containing different graph
anomalies. Individual anomaly detection algorithms detect suspicious user
nodes that show distinct outlier patterns that differentiate them from the
majority. Group anomaly detection algorithms locate the user node groups that
form dense subgraphs, indicating they are all suspicious users. (a) Individual
Anomalies. (b) Group Anomalies.

score given by BIRDNEST [18],
∏

U (u) is u’s behavior
normality score, and α1 and α2 are constants.

3) Model-Based Graph Anomaly Detection: The idea
behind these methods is that the majority of the graphs,
or say, the structural dependence, can be learned by a
specific graph model (e.g., compression model, genera-
tive model) and the anomalies deviate significantly from
the model. Chakrabarti [19] and Shah et al. [20] used a
compression scheme based on the minimum description
length (MDL) philosophy. Therefore, the removal of
anomalies led to the maximum reduction in compression
cost. Gao et al. [21] used the hidden Markov random
fields (HMRF) model to characterize normal communi-
ties and assumed that the anomalies follow a uniform
distribution.

2) Group Anomaly Detection Algorithms: defined measure-
ments on how suspicious a subgraph is with respect to the size
and high density in a large graph, then employed an efficient
algorithm scheme (e.g., greedy search) to detect the subgraphs
of high suspiciousness. Suppose the detection algorithm finds
B dense subgraphs (blocks) {Bi = (Ub,i ⊆ U,Vi ⊆ V)}Bi=1,
where Ub,i and Vi denote the set of user nodes and item nodes
in block Bi , respectively. Following the previous notations,
we also denote the output of these algorithms as a binary
matrix P ∈ {0, 1}|U |×(B+1), where each line of P is a one-hot
vector indicating which one of the dense blocks does the user
belong to. In the case that user ui does not belong to any of the
B dense blocks, the i th row of P would be Pi = [0, . . . , 0, 1]
as the last column of P indicates that the node is not in any
dense block.

For each block Bi , we denote the size by ni = |Ub,i |
and mi = |Vi |; we denote the number of ratings in the
block by ci = |{ru,v > 0|u ∈ Ub,i , v ∈ Vi}|. The sus-
piciousness score is defined in different ways in different
approaches.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: SYNERGISTIC APPROACH FOR GRAPH ANOMALY DETECTION 5

1) Average Degree (AD) [22], [23]

suspAD(Bi) = ci

ni
. (6)

2) Singular Value (SV) [24], [25]

suspSV(Bi) = ci√
ni ·mi

. (7)

3) Kullback–Leibler divergence of Density (KL) [26]

suspKL(Bi) = ni ·mi · DKL(ρi ‖ p) (8)

where ρi = ci/(ni · mi) is density of the block in
the adjacency matrix, p = (|{ru,v > 0|u ∈ U, v ∈
V}|)/(|U | · |V|) is the density of the entire data matrix,
and DKL(ρi ‖ p) = p − ρ + ρ log (ρ/p) is the KL
divergence between ρi and p.

D. Distribution-Aware Anomaly Margin Loss

Traditionally, to train the GNNs in an unsupervised manner,
RW-based loss functions are often applied to learn the output
representations, zu,∀u ∈ U , and to tune the weight matri-
ces Wk,∀k ∈ {1, . . . , K } using stochastic gradient descent.
The RW-based loss encourages nearby nodes to have sim-
ilar representations as well as enforcing the representations
of disparate nodes to be distinct, which can be formatted
as [4]

LRW(u) = Eu+∼Uu+,u−∼Uu− max
{
0, zT

u zu− − zT
u zu+ +�

}
(9)

where � denotes a fixed margin hyperparameter, Uu+ denotes
the set of user nodes that are reachable with a fixed length
random-walk starting from u, and Uu− denotes U \ U+. How-
ever, as we mentioned before, it is neither proper nor effective
when the task is to detect anomalies on graphs because of
the imbalance problem of the data for anomaly detection.
Fortunately, previous research have been done on learning with
imbalanced data [12], [27], [28]. Here, we propose a class-
distribution-aware margin loss function that is able to utilize
the results of the pattern mining algorithms.

Let yu denote the the label of user node u (note that user
nodes in different anomalous groups should have different
labels here). We assume that the class-conditional distribution
P(u|yu) is the same at training and testing. Then, let P j denote
the class-conditional distribution, that is, P j = (u|yu = j). For
our GNN model, f : U → R

d , we use function g : U×U → R

to denote the similarity of the representations of any two user
nodes u and u′

g
(
u, u′
) = f (u)T · f

(
u′
)

(10)

and Lbal[g] to denote the standard 0–1 test error on the
balanced data distribution

Lbal[g] = Pr
(u, j)∼Pbal

[
min

yu+= j
g(u, u+) < max

yu− �= j
g(u, u−)

]
. (11)

The error L j for class j is then defined similarly as

L j [g] = Pr
u∼P j

[
min

yu+= j
g(u, u+) < max

yu− �= j
g(u, u−)

]
. (12)

Let n j be the number of user nodes in class j and Sj =
u : yu = j denote the set of user nodes with label j . Define
the training margin for class j as

γ j = min
u∈S j

(
min

yu+= j
g(u, u+)− max

yu− �= j
g(u, u−)

)
(13)

where γmin = min{γ1, . . . , γ j } is the widely used training
margin in previous studies [27]. Then, we let Lγ, j denote the
margin loss for class j when training

Lγ, j [g] = Pr
u∼P j

[
min

yu+= j
g(u, u+) < max

yu− �= j
g
(
u, v ′
)+ γ

]
(14)

and let L̂γ, j denote its empirical variant. For a hypothesis
class G, we use R̂(G) to denote the empirical Rademacher
complexity of margin for class j

R̂ j(G)

= 1

n j
Eσ

⎡
⎣sup

g∈G

∑
u∈S j

σu

[
min

yu+= j
g(u, u+)− max

yu− �= j
g(u, u−)

]⎤⎦ (15)

where σ is a vector of independent identically distributed
(i.i.d.) uniform {−1,+1} bits. Here, we consider the bound
below for balanced test distribution by considering the margin
of each class, which allows us to design distribution-aware
margin loss function that is suitable for the imbalanced data.

Theorem 1: With probability 1 − δ over the randomness
of the training data, for all choices of class-dependent mar-
gins γ1, γ2, . . . , γk > 0, all hypotheses g ∈ G will have
balanced-class generalization bounded by

Lbal[g] ≤ 1

k

⎛
⎝ k∑

j=1

L̂γ j , j [g]+ 4

γ j
R̂ j(G)+ ε j

(
γ j
)⎞⎠ (16)

where ε j(γ ) � ((log log2(2 maxu,v∈U ,g∈G |g(u, v)|)/γ +
log(2c)/δ)/n j)

1/2 is typically a low-order term in n j . Con-
cretely, the Rademacher complexity R̂ j (G) will typically
scale as ((C(G))/n j )

1/2 for some complexity measure C(G),
in which case

Lbal[g] ≤ 1

k

⎛
⎝ k∑

j=1

L̂γ j , j [g]+ 4

γ j

√
C(G)

n j
+ ε j
(
γ j
)⎞⎠. (17)

Note that although the losses and empirical Rademacher
complexity of margins are defined different from those in
Theorem 2 in [12], the above inequality still holds. For the
coherence of reading, the proof of Theorem 1 is provided in
Section II-E.

The balanced generalization error bound [see (17)] suggests
that in order to improve the generalization of minority classes,
we should enforce larger margins for them. However, manually
assigning larger margins for minority classes may lead to
suboptimal margins for the frequent class and, hence, hurt
the model’s performance. Thus, here, we take the binary
classification problem as an example of showing how to obtain
the optimal tradeoff.

When k = 2, we aim to optimize the balanced gener-
alization error bound in (17), which can be simplified to

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(after removing constant factors, common factor C(G) and
low-order term ε j(γ j)) [12]

1

γ1
√

n1
+ 1

γ2
√

n2
. (18)

Although the it is hard to get the optimal margins with
the above equation as they are complicate functions of the
parameters in g(·), we can figure out the relative scales
between the two margins. Suppose we have γ ∗1 , γ ∗2 > 0 that
minimize the equation above, we observe that any γ ′1 = γ ∗1 −δ
and γ ′2 = γ ∗2 + δ (where −2γ ∗2 < δ < γ ∗1 ) can be realized
by the same parameters with a shifted bias term. Therefore,
for γ ∗1 , γ ∗2 to be optimal, the following inequality must be
satisfied [12]:

1

γ ∗1
√

n1
+ 1

γ ∗2
√

n2
≤ 1(

γ ∗1 − δ
)√

n1
+ 1(

γ ∗2 + δ
)√

n2
(19)

which implies that

γ ∗1 ∝ n−1/4
1 , and γ ∗2 ∝ n−1/4

2 . (20)

Given the tradeoff above, we can define our margin loss as

L(u) = max

{
0, max

yv ′ �=yu

g
(
u, v ′
)− min

yv=yu

g(u, v) +�yu

}

where �yu =
C

n1/4
yu

. (21)

Here, C is a constant hyperparameter. When applying the
above loss function on real-world graphs, it is impossible
to enumerate all node pairs when calculating the minimum
and maximum distances. Hence, we use positive and negative
sampling to approximate the distances. That is, we propose the
following margin loss function in our PAMFUL framework:
L(u) = Eu+∼Uu+,u−∼Uu− max

{
0, g(u, u−)− g(u, u+)+�yu

}
where �yu =

C

n1/4
yu

. (22)

Here, Uu+ denotes the set of user nodes that has the same
label as u, Uu− denotes U \ Uu+, and nyu = |Uu+|.

1) Positive and Negative Sampling: When applying the
above distribution-aware anomaly margin loss [see (22)] for
the training of GNNs, we are not aware of the ground-truth
labels for the users as the task is unsupervised. Therefore,
we utilize the results of graph pattern mining algorithms to
estimate the user node sets Uu+ and Uu− for each user node
u, which is also the global pattern information learned by the
algorithms.

With the pattern feature P from pattern mining algorithms,
we now can sample positive and negative nodes for each user
node based on their involvement in global patterns. That is,
when sampling for each user node u ∈ U in the loss function
[see (22)], we let

Uu+ = {v|∀v ∈ U, Pv = Pu}
Uu− = {v|∀v ∈ U, Pv �= Pu}. (23)

With the positive and negative user node sets defined above
for each user node, the model can effectively encourage the
nodes with the same global patterns (e.g., both are individual

anomalies or belong to the same anomalous group) to have
similar representations. Moreover, it also enforces that the
representations of pairs of nodes with different global patterns
(e.g., anomalies and normal nodes; nodes belong to different
anomalous groups) to be distinct in the latent space.

E. Proofs

To prove Theorem 1, we first need to get familiar with the
following theorem for standard margin-based generalization
bounded (Theorem 5 in [28]) in our notation.

Theorem 2 ([27], [28]): Consider and arbitrary function
class G such that ∀g ∈ G, we have supx∈X ≤ C . Then, with
probability at least 1−δ over the sample, for all margins γ > 0
and all g ∈ G, we have

L[g] ≤ Kγ [g]+ 4

γ j
Rn(G)+

√
log log2

4C
γ

n
+
√

log 1
δ

2n
(24)

where Kγ [ f ] is the fraction of the data that have γ -margin
mistakes.

Proof [28]: Let lγ (t) be defined as

lγ (t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t ≤ 0

1− t

γ
, 0 < t < γ

0, t ≥ γ.

(25)

For j = 0, 1, . . . , set γ j = C/2 j and δ j = δ/(i + 1)2.
Applying Theorem 3 in [28] to the loss function lγ j , which
has Lipschitz constant 1/γ j , we get the following inequality
with probability at least 1− δ j for all g ∈ G:

Lγ j [g] ≤ L̂γ j [g]+ 2

γ j
Rn(G)+

√
log 1

δ

2n
. (26)

Note that for any γ > 0 and any g ∈ G, L[g] ≤ Jγ [ j ] and
L̂γ [ f ] ≤ Kγ [ f ]. Hence, with probability at least 1 − δi , for
all g ∈ G, we have

L[g] ≤ Kγ j [g]+ 2

γ j
Rn(G)+

√
log 1

δ

2n
. (27)

Taking union bound over all j , we get that with probability
at least 1− π2δ/6 ≥ 1 − 2δ, for all j and all g ∈ G, we still
have

L[g] ≤ Kγ j [g]+ 2

γ j
Rn(G)+

√
log 1

δ

2n
. (28)

Note that because |g(x)| ≤ C , L̂C [g] = 1 and so that bound
claimed in the theorem holds trivially for γ ≥ C . For γ < C
find the j such that γ j ≤ γ < γ j−1. Note that this means
j ≤ log2(C/γ ) + 1. Because Kγ j [g] ≤ Kγ [g], 1/γ j ≤ 2/γ ,
and log(1/δ j) ≤ log(1/δ)+ 2 log log2(4C/γ ), we have

L[g] ≤ Kγ [g]+ 4

γ j
Rn(G)+

√
2 log log2

4C
γ
+ log(1/δ)

2n
.

(29)

Now we lead to the proof of Theorem 1:

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: SYNERGISTIC APPROACH FOR GRAPH ANOMALY DETECTION 7

Proof: We first prove the generalization seperately for
each class j . Let L j [g] denote the 0–1 test error of classifier
g on examples drawn from P j . Because all examples of
class j are a set of n j , i.i.d. draws from the conditional
distribution P j ; and we can apply the standard margin-based
generalization bound (Theorem 2 [27], [28]) and obtain the
following bound with probability 1 − δ/c, for all γ j > 0 and
g ∈ G:

L j [g] ≤ L̂γ j , j [g]+ 4

γk
R̂ j(G)

+

√√√√ log log2

(
2 maxu,v∈U,g∈G |g(u,v)|

γ

)
n j

+
√

log 2c
δ

n j
. (30)

Because Lbal = (1/k)
∑k

j=1 L j , we can union the above
bound over all classes and average (30) to get the generalized
bound.

III. EXPERIMENTS

In this section, we evaluate the proposed PAMFUL for
anomalous user detection on two real-world datasets. Our code
package and datasets can be found on GitHub.1

A. Experimental Settings

1) Datasets: Bitcoin-Alpha is a trust network of Bitcoin
trading users on the Alpha platform [29], where each edge
indicates a rating from one user to another with a rating
score. The network has 3275 user nodes and 3742 items nodes.
Kumar et al. [16] labeled 214 users: 83 and 131 are labeled
as suspicious users and benign users, respectively. The raw
feature vector is concatenated by three parts: 1) a one-hot
vector indicating the degree of the user node; 2) the summation
of one-hot vectors that each represents a rating score given by
this user; and 3) the summation of one-hot vectors where each
hot represents a time interval between two consecutive ratings.

Weibo is a user-posts-hashtag graph from a Twitter-like
micro-blogging platform (Tencent Weibo). It has 8405 users
and 61 964 hashtags [30]. The weight of user-hashtag edge is
the number of the particular hashtag the user posted. Temporal
information was used to label the users. The algorithm in [30]
assumed that posting two messages within a specific number
of seconds such as 10, 15, 30, 45, and 60 is a suspicious
event. If a user made at least five suspicious events, he/she
is labeled as a suspicious user; if a user made no suspicious
event, he/she is a benign user. So, we have 868 suspicious
users and 7537 benign users. Because the ground truth was
generated using time information, we do not use timestamps
to create raw user features. Therefore, the raw feature vector
has two parts.

1) For each user, we first sum up one-hot vectors. Each
hot represents the location where a micro-blog post was
made. Then, we reduce #dimensions of the location fea-
tures to 100 using singular value decomposition (SVD).

2) For each user, we reduce #dimensions of bag-of-words
features to 300.

1https://github.com/zhao-tong/Graph-Anomaly-Loss

2) Baseline Methods and PAMFUL Variants:
a) Unsupervised group anomaly detection methods:

1) FRAUDAR [5]: It catches suspicious group anomalies
with theoretical bounded densities for camouflage.

2) CATCHSYNC [11]: It captures the synchronized behav-
ior patterns in rating networks and social networks.

3) LOCKINFER [10]: It uses singular vectors of adjacency
matrix to find anomalous groups of users in spectral
subspaces.

b) Unsupervised individual anomaly detection methods:
1) FRAUDAR_R: It is the reverse of FRAUDAR. We use

FRAUDAR to detect first several dense groups until the
remaining density is very low and report the remaining
users as anomalies.

2) LOCKINFER_R: It is the reverse of LOCKINFER. We use
LOCKINFER to detect all user groups in spectral sub-
space and report users who are not contained in any
group as anomalies.

3) FRAUDEAGLE [9]: It uses a belief propagation-based
algorithm to give a fraud score to each user. Outlying
users who behave more different than the majority are
given higher fraud scores.

4) REV2 [16]: It uses an iterative algorithm to find unfair
users whose behaviors can be considered anomalies
compared with the majority.

c) Unsupervised node embedding methods:
1) NODE2VEC [31]: It uses biased RWs to capture the

homophily and local structure information of the net-
work. Hyperparameters p, q ∈ {0.25, 0.5, 1, 2, 4} con-
trol the search bias.

2) LINE [32]: It uses first- and second- order proximity
to capture the local and 2-hop structure of the network
via edge sampling.

3) BINE [33]: It learns the representations of vertices in a
bipartite network. Biased RWs are conducted to preserve
the long-tail distribution of vertices.

d) Unsupervised GNN-based methods:
1) GCN [1]: It is a spectral-based GNN that learns node

embeddings via a localized first-order approximation
of spectral graph convolutions. It uses an unsupervised
RW-based loss function.

2) GSAGE [2]: It is a GNN that enables specifying
different weights to different nodes in a neighborhood.
It uses an unsupervised RW-based loss function.

3) GAT [15]: It is a GNN that learns node embeddings
inductively from its own feature and the aggregated fea-
tures of its neighbors. It uses an unsupervised RW-based
loss function.

4) DOMINANT [34]: It is a graph auto-encoder-based deep
neural network model for graph anomaly detection.
It reconstructs the graph structure and node attributes
to find the anomaly nodes.

In summary, we compare among 14 baseline methods,
including 3 group anomaly detection methods, 4 individual
anomaly detection methods, 3 graph embedding methods, and
4 unsupervised GNN methods. We also compare PAMFUL

itself among 10 variants: 8 with GSAGE and different

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

pattern mining algorithms (+FRAUDAR, +CATCHSYNC,
+LOCKINFER, +FRAUDAR_R, +LOCKINFER_R,
+FRAUDEAGLE, +BIRDNEST, +REV2), and 2 with
other GNN encoders (GCN, GAT).

3) Implementation Details: For all graph embed-
ding/representation learning methods including ours, the size
of representation is 128 and the total sampling size is
100 times the number of user nodes. For all GNN methods,
the number of layers are set as 2. For GSAGE [2], we use
the Mean aggregator. For GAT [15], because of its high
computational complexity, the number of heads for hidden
layers’ self-attention is set as 1 in order to have a hidden
size of 128. For NODE2VEC, we use grid search to find the
optimal hyperparameters p, q . For FRAUDAR [5], we use
log-weighted AD as the suspiciousness metric. Parameters for
other methods are set to typical values as used in previous
studies. During the training of PAMFUL, a lightly weighted
RW loss is used as a regularization term on the GNN
encoder. For fair comparison, the collaborative aggregation
described in Section II-B is used on all GNNs. We randomly
split the users into training/validation/testing sets with the
ratio of 3:1:2 for Weibo dataset and 2:1:1 for Bitcoin-Alpha
dataset, as the number of labeled users in Bitcoin-Alpha is
relatively small. Moreover, we report the median performance
of five different training/validation/testing splits to further
diminish the impact of limited evaluation samples.

4) Evaluation Settings: For all graph embed-
ding/representation learning methods, we use a three-layer
fully connected feed-forward neural network [multi-layer
perceptron (MLP)] as the binary classification model to
evaluate the learned representations. For DOMINANT [34],
the output anomalous ranking score is used as the input of
MLP classifier. For each dataset, the labeled users are divided
into a training set, validation set, and testing set. The MLP
model is trained on the training set, and the evaluation results
on the testing set are reported when the model achieves the
highest F1 score on validation set.

For all methods, we report evaluation metrics of Precision,
Recall, F1 score, area under receiver operating characteristic
(ROC) curve (AUC), and precision–recall curve for selective
methods.

B. Results on Bitcoin-Alpha
Table I presents the performance of PAMFUL and all base-

lines for anomaly detection on Bitcoin-Alpha. Fig. 4(a), (c),
and (e) presents the precision–recall curves of PAMFUL with
three different GNN encoders (i.e., GCN, GAT, GSAGE)
and two types of pattern mining-based anomaly detection
algorithms.

1) The Suspicious Behaviors on Bitcoin-Alpha Are More
Likely to Form Individual Anomalies: Most individual
anomaly detection methods perform better than group
anomaly detection methods. For example, FRAUDAR_R

achieved an F1 of 0.6733, while CATCHSYNC had an
F1 of 0.5616.

2) Graph Representation Learning Models, Including
GNNs, Combine Both Node Feature and Graph Struc-
tural Information, But the Improvement by Those Is Not

TABLE I

PAMFUL WITH GSAGE AND INDIVIDUAL ANOMALY DETECTION

ALGORITHMS PERFORM THE BEST ON BITCOIN-ALPHA DATASET

Significant: For example, NODE2VEC achieved an F1 of
0.6977 and FRAUDAR_R achieved an F1 of 0.6733. The
reason is that the individual anomaly’s local neighbors
may not be anomalies.

3) PAMFUL Variants Outperform All Baseline Methods:
PAMFUL with GSAGE and individual anomaly detec-
tion algorithm FRAUDAR_R achieved the best perfor-
mance: An F1 of 0.7568, an average precision (AP)
of 0.8221, and an AUC of 0.8556. It outperformed
the best graph representation learning method GCN
relatively by +8.1% and +14.6% on the two metrics.
And it outperforms the best anomaly detection method
FRAUDAR_R relatively by +12.4% and +11.7%.

Fig. 3 visualize the user embeddings. Fig. 4(a), (c), and
(e) compare the precision–recall curves of NODE2VEC, GNN
methods, and PAMFUL with two anomaly detection algo-
rithms (REV2 and FRAUDAR_R) and different GNN encoders.
We observe that GCN performs the best among the three
GNNs, and PAMFUL variants perform the best.

C. Results on Weibo

Table II presents the performances on Weibo dataset. Note
that because the labels are seriously biased, F1 is more

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: SYNERGISTIC APPROACH FOR GRAPH ANOMALY DETECTION 9

Fig. 3. Visualizing user embeddings in Weibo data. Blue dots represent benign users and red dots represent anomalous users. Representations learned by
PAMFUL (e)–(h) are better than those by baselines (b)–(d). (a) NODE2VEC [31]. (b) GCN [1]. (c) GSAGE [2]. (d) GAT [15]. (e) PAMFUL with GSAGE +
Fraudar. (f) PAMFUL with GSAGE + LOCKINFER. (g) PAMFUL with GCN + LOCKINFER. (h) PAMFUL with GAT + LOCKINFER.

Fig. 4. Precision–recall curves are presented to compare the best graph
embedding baseline, a graph neural algorithm, and two best PAMFUL vari-
ants. (a) PAMFUL–GSAGE on Bitcoin. (b) PAMFUL–GSAGE on Weibo.
(c) PAMFUL–GCN on Bitcoin. (d) PAMFUL–GCN on Weibo. (e) PAMFUL–
GAT on Bitcoin. (f) PAMFUL–GAT on Weibo.

representative than AUC on this dataset. Fig. 4(b), (d), and (f)
shows the precision–recall curves of PAMFUL with three
different GNN encoders and two pattern mining algorithms.

1) The Anomalous Users on Weibo Are More Likely to Form
Group Anomalies: Group anomaly detection methods

perform much better than individual anomaly detection
methods. FRAUDAR achieved an F1 of 0.7540, while
FRAUDEAGLE only made an F1 of 0.4102. The reason
is that fraudsters had to post a large number of messages
in a group to inflate the popularity of hashtag.

2) Local Neighborhood Is More Informative Than Pure
Global Structure: Graph embedding models perform
better than the pattern mining algorithms. For exam-
ple, LINE achieved an F1 of 0.8105, while FRAUDAR

achieved an F1 of 0.7540. The models that use local
structures for embedding aggregation can preserve the
user similarity of being in the same anomalous groups.

3) PAMFUL Variants Outperform All Baseline Methods:
PAMFUL with GSAGE and group anomaly detection
algorithm LOCKINFER performed the best: An F1 of
0.9042 and an AUC of 0.9843. It outperformed the best
graph embedding method LINE relatively by +11.6%
and +4.4% on the two metrics. And it outperformed
GSAGE relatively by +7.3% and +0.6%.

Fig. 4(b), (d), and (f) compares the precision–recall curves
of LINE, GNNs, and PAMFUL with two anomaly detection
algorithms (FRAUDAR and LOCKINFER). PAMFUL variants
with GSAGE perform the best.

Embedding Visualization: Fig. 3 shows the embeddings
of users in the Weibo dataset given by four baselines of
graph embedding methods Fig. 3(a)–(d) and our PAMFUL

variants Fig. 3(e)–(h). The 128-dim embeddings are projected
to 2-dim space via t-distributed stochastic neighbor embedding
(t-SNE) [36]. From the plots, we observe that the represen-
tations learned by PAMFUL with group anomaly detection
algorithms can better separate the blue benign users and red
suspicious users. Specifically, the representations learned by
the baseline methods Fig. 3(a)–(d) cannot effectively sepa-
rate the red anomalous users and blue benign users: most
anomalies are in the center area and are close to the benign
users. For PAMFUL with GSAGE and FRAUDAR Fig. 3(e),
we observe that most anomalies are grouped on the boundaries

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

PAMFUL WITH GSAGE AND GROUP ANOMALY DETECTION

ALGORITHMS PERFORM THE BEST ON WEIBO DATASET

while a small group of anomalies is still remaining in the
middle area. We think the reason is that FRAUDAR could not
detect that group of users as a dense block. In Fig. 3(f)–(h),
our proposed PAMFUL with GNNs and LOCKINFER can better
separate the anomalies and benign users. We also notice that
in Fig. 3(g) and (h), several crowds of benign users are also
grouped on the boundary of the latent space. We remark that
these are the smaller benign communities that were detected by
LOCKINFER and grouped together in the latent space because
of our design of forcing the representations of all nodes in
the same community/block to be similar [see (23)]. With the
representations learned by PAMFUL, a simple classifier can be
easily trained with few labels to detect the anomalies.

D. Ablation Study

To further analyze the effectiveness of PAMFUL, we con-
duct an ablation study to examine the contribution of different
components by having different settings.

1) GNN: just the GNN encoder trained by the RW-based
loss function [see (9)].

2) PAMFUL-SINGLEGROUP: When using group anom-
aly detection methods as pattern mining algorithm in
PAMFUL, instead of separating all anomaly groups as

TABLE III

ABLATION STUDY RESULTS ON WEIBO DATA

TABLE IV

PAMFUL WITH GCN + LOCKINFER OUTPERFORMS SELECTED

BASELINES ON THE WEIBO-2012 DATASET

described in (23), treat all anomalous groups as one
single group (compressing the second dimension of P
in to 2).

3) PAMFUL With FRAUDAR/ LOCKINFER: PAMFUL with
different GNN encoders and different group anomaly
detection algorithms (FRAUDAR and LOCKINFER).

Table III summarizes the results of the ablative study, from
which we have the following observations.

1) PAMFUL Consistently Outperform GNNs: PAMFUL

framework is able to generate node representations that
are more suitable for the task of anomaly detection.

2) Separating Different Anomalous Groups Helps: PAM-
FUL outperforms PAMFUL-SINGLEGROUP, which indi-
cates that the design of separating the representations of
anomaly users from different groups when using group
anomaly detection algorithms (Section II-C) is able to
learn representations that are more separable.

To show the stability and generalizability PAMFUL, we eval-
uate PAMFUL with selected baselines on another Weibo
dataset that were collected from a different time span. This
Weibo-2012 dataset has 8048 users and 56 573 hashtags,
in which 826 (10.3%) users were labeled as anomalies.
Table IV summarizes the performance of the best baseline
methods and PAMFUL with GCN + LOCKINFER on the
Weibo-2012 dataset. We observe that PAMFUL with GCN +
LOCKINFER can effectively detect the anomalies in different
datasets.

E. Sensitivity and Efficiency Analysis

When transforming the outputs of pattern mining algorithms
to the binary pattern feature P as described in Section II-C,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: SYNERGISTIC APPROACH FOR GRAPH ANOMALY DETECTION 11

Fig. 5. Parameter sensitivity: On the effectiveness of pattern mining
algorithms in PAMFUL. (a) Number of anomalous groups. (b) Anomaly
threshold.

Fig. 6. Depth sensitivity and efficiency analysis. (a) Number of GNN layers.
(b) Per-batch training time.

a classification threshold is usually needed to determine which
users are labeled as potential anomalies based on the sus-
piciousness scores. For group anomaly detection algorithms,
different groups have their unique labels instead of a too
general positive label. With the pattern feature P indicating
which anomalous group does each user belong to (when
applicable), the node embeddings would not change when
the threshold changed (and the number of groups changed),
as shown in Fig. 5(a). On the other hand, for individual
anomaly detection algorithms, the node suspiciousness scores
are usually continuous and do not show obvious gap. We need
a parameter search to determine the best threshold. Fig. 5(b)
shows that the performance of PAMFUL is not sensitive to this
parameter.

Fig. 6(a) shows the performance of PAMFUL with
GSAGE + LOCKINFER w.r.t. the number of hidden layers
in the GNN encoder. Similar to most existing GNN methods,
the performance achieves the best performance when the
number of hidden layers is not big or too small. Fig. 6(b)
reports the average per-batch training time of PAMFUL with
GSAGE + LOCKINFER on the Weibo dataset with regard to
the batch size. The time cost is linear to batch size, which
enables the training of PAMFUL with large graphs.

IV. RELATED WORK

In this section, we survey research work in the last ten years
of as many as five related topics.

A. Imbalanced Learning

Learning with imbalanced data has always been a challeng-
ing problem for machine learning. Most existing work focused
on sampling and generating techniques. These algorithms
either under-sample/over-sample the data objects [37], [38]
or generate new data objects for the minority classes [13].
Kakade et al. [28] proved that generalization error for both
linear and nonlinear models with hinge losses is bounded.

Recently, Cao et al. [12] showed that the error bound could
be found on imbalanced datasets. Huang et al. [39] studied
supervised image representation learning on imbalanced data
with different intercluster and interclass margins.

B. Graph Embedding

The goal is to learn node embeddings in a low-dimensional
space using random-walk paths or factorized features
[31]–[33], [40], [41]. These algorithms are transductive as
they directly train node embeddings for individual nodes and
require retraining or additional training to generate embed-
dings for new nodes. DEEPWALK [40] and NODE2VEC [31]
learned node embeddings by performing word embedding
models WORD2VEC on “corpus” of nodes generated by RW.
BINE [33] extended DEEPWALK and optimized for bipartite
graphs. ADONE [42] was an unsupervised auto-encoder that
learns outlier resistant embeddings.

C. Graph Neural Networks

GNNs are deep learning architectures for graph structured
data. The core idea is to learn node representations through
local neighborhoods. Many GNN variants have been developed
in recent years, following the initial idea of convolution based
on spectral graph theory [43]. Many spectral GNNs have
since been developed [1], [44]. As spectral GNNs generally
operate (expensively) on the full adjacency, spatial-based
inductive GNNs that perform graph convolution with neigh-
borhood aggregation became prominent [4], [15], [45]–[47].
More recently, several GNN-based methods [48]–[56] were
also proposed for the task of semisupervised or supervised
graph anomaly detection.

D. Graph Individual Anomaly Detection

The goal is to find outlier nodes in large graphs [6], [7].
Traditional density-based clustering methods [19], [57]
regarded nodes in sparse regions as outliers. Similar
approaches have been developed for bipartite graphs [58].
SPOTLIGHT [59] detected outliers in streaming graphs.
REV2 [16] was an iterative algorithm that calculated reviewer
fairness scores. DOMINANT [34] was an attributed graph
auto-encoder that detects anomalous nodes. REPEN [60]
learned representations for distance-based outlier detection.

E. Graph Group Anomaly Detection

The goal is to find suspicious nodes by locating dense
subgraphs in the graph’s adjacency matrix [61]. SPOKEN [24]
found the “spokes” pattern on pairs of eigenvectors of graphs.
LOCKINFER [10] identified pattern of communities based on
singular vectors of graphs. FBOX [25] located mini-scale
attacks missed by spectral techniques. CATCHSYNC [11]
found the lockstep behaviors made by fraudulent users. Several
methods [61]–[63] utilized dense subgraph detection algo-
rithms to find the suspicious dense blocks. Hooi et al. [5]
and Shin et al. [64] showed that the edge density-based sus-
piciousness of subgraph or subtensor can be maximized with
approximation guarantee. MSTREAM [65] and MIDAS [66]
focused on detection of group anomalies on edge streams.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

V. CONCLUSION

In this work, we presented a novel synergistic approach
PAMFUL that is able to unsupervisedly learn node represen-
tations that are tailored for graph anomaly detection. Unlike
most existing graph anomaly detection algorithms or graph
representation learning methods, PAMFUL combines pattern
mining into the feature learning process. Specifically, PAMFUL

leverages pattern mining algorithms to guide the training
process of the GNN encoder such that the learned representa-
tions contain local neighborhood information as well as global
structural properties. Experiments on two real-world datasets
demonstrated that PAMFUL significantly outperformed
18 baselines, and the representations learned by PAMFUL are
shown effective for graph anomaly detection empirically.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907. [Online]. Available:
http://arxiv.org/abs/1609.02907

[2] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. NIPS, 2017, pp. 1–11.

[3] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Hetero-
geneous graph neural network,” in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Jul. 2019, pp. 793–803.

[4] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2018, pp. 974–983.

[5] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos,
“FRAUDAR: Bounding graph fraud in the face of camouflage,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 895–904.

[6] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting anom-
alies in weighted graphs,” in Proc. Pacific-Asia Conf. Knowl. Discovery
Data Mining, 2010, pp. 410–421.

[7] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: A survey,” Data Mining Knowl. Discovery, vol. 29,
no. 3, pp. 626–688, May 2015.

[8] S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging
review networks and metadata,” in Proc. 21th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2015, pp. 985–994.

[9] L. Akoglu, R. Chandy, and C. Faloutsos, “Opinion fraud detection in
online reviews by network effects,” in Proc. ICWSM, 2013, pp. 1–10.

[10] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang, “Inferring
lockstep behavior from connectivity pattern in large graphs,” Knowl.
Inf. Syst., vol. 48, no. 2, pp. 399–428, 2016.

[11] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang, “CatchSync:
Catching synchronized behavior in large directed graphs,” in Proc. 20th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2014,
pp. 941–950.

[12] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning
imbalanced datasets with label-distribution-aware margin loss,” 2019,
arXiv:1906.07413. [Online]. Available: https://arxiv.org/abs/1906.07413

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, pp. 321–357, Jun. 2002.

[14] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[15] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.
[Online]. Available: https://arxiv.org/abs/1710.10903

[16] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and
V. S. Subrahmanian, “REV2: Fraudulent user prediction in rating
platforms,” in Proc. 11th ACM Int. Conf. Web Search Data Mining,
Feb. 2018, pp. 333–341.

[17] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise Reduction in Speech Processing. Berlin, Germany:
Springer, 2009, pp. 1–4.

[18] B. Hooi et al., “BIRDNEST: Bayesian inference for ratings-fraud detec-
tion,” in Proc. SIAM Int. Conf. Data Mining, Jun. 2016, pp. 495–503.

[19] D. Chakrabarti, “Autopart: Parameter-free graph partitioning and outlier
detection,” in Proc. PKDD, 2004, pp. 112–124.

[20] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “Time-
Crunch: Interpretable dynamic graph summarization,” in Proc. 21th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2015,
pp. 1055–1064.

[21] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han, “On community
outliers and their efficient detection in information networks,” in Proc.
16th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010,
pp. 813–822.

[22] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama, “Greedily finding a
dense subgraph,” J. Algorithms, vol. 34, no. 2, pp. 203–221, Feb. 2000.

[23] R. Andersen, “A local algorithm for finding dense subgraphs,” ACM
Trans. Algorithms, vol. 6, no. 4, pp. 1–12, Aug. 2010.

[24] B. A. Prakash, A. Sridharan, M. Seshadri, S. Machiraju, and
C. Faloutsos, “EigenSpokes: Surprising patterns and scalable community
chipping in large graphs,” in Proc. Pacific–Asia Conf. Knowl. Discovery
Data Mining. Berlin, Germany: Springer, 2010, pp. 435–448.

[25] N. Shah, A. Beutel, B. Gallagher, and C. Faloutsos, “Spotting suspicious
link behavior with fBox: An adversarial perspective,” in Proc. IEEE Int.
Conf. Data Mining, Dec. 2014, pp. 959–964.

[26] M. Jiang, A. Beutel, P. Cui, B. Hooi, S. Yang, and C. Faloutsos,
“Spotting suspicious behaviors in multimodal data: A general metric
and algorithms,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 8,
pp. 2187–2200, Aug. 2016.

[27] V. Koltchinskii and D. Panchenko, “Empirical margin distributions and
bounding the generalization error of combined classifiers,” Ann. Statist.,
vol. 30, no. 1, pp. 1–50, Feb. 2002.

[28] S. M. Kakade, K. Sridharan, and A. Tewari, “On the complexity of
linear prediction: Risk bounds, margin bounds, and regularization,” in
Proc. NIPS, 2009, pp. 1–10.

[29] S. Kumar, F. Spezzano, V. S. Subrahmanian, and C. Faloutsos, “Edge
weight prediction in weighted signed networks,” in Proc. IEEE 16th Int.
Conf. Data Mining (ICDM), Dec. 2016, pp. 221–230.

[30] M. Jiang, “Catching social media advertisers with strategy analysis,”
in Proc. 1st Int. Workshop Comput. Methods CyberSafety, Oct. 2016,
pp. 5–10.

[31] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2016, pp. 855–864.

[32] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proc. 24th Int. Conf. World
Wide Web, 2015, pp. 1067–1077.

[33] M. Gao, L. Chen, X. He, and A. Zhou, “BiNE: Bipartite network
embedding,” in Proc. 41st Int. ACM SIGIR Conf. Res. Develop. Inf.
Retr., Jun. 2018, pp. 715–724.

[34] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection
on attributed networks,” in Proc. SIAM Int. Conf. Data Mining, 2019,
pp. 594–602.

[35] B. Hooi, K. Shin, H. A. Song, A. Beutel, N. Shah, and C. Faloutsos,
“Graph-based fraud detection in the face of camouflage,” ACM Trans.
Knowl. Discovery from Data, vol. 11, no. 4, pp. 1–26, Aug. 2017.

[36] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. 11, pp. 1–27, 2008.

[37] N. V. Chawla, “C4. 5 and imbalanced data sets: Investigating the effect
of sampling method, probabilistic estimate, and decision tree structure,”
in Proc. ICML, 2003, p. 66.

[38] D. Mease, A. J. Wyner, and A. Buja, “Boosted classification trees and
class probability/quantile estimation,” J. Mach. Learn. Res., vol. 8, no. 3,
pp. 1–31, 2007.

[39] C. Huang, Y. Li, C. C. Loy, and X. Tang, “Learning deep representation
for imbalanced classification,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 5375–5384.

[40] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
discovery data mining, Aug. 2014, pp. 701–710.

[41] D. Wang, M. Jiang, Q. Zeng, Z. Eberhart, and N. V. Chawla, “Multi-
type itemset embedding for learning behavior success,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 2397–2406.

[42] S. Bandyopadhyay, S. V. Vivek, and M. N. Murty, “Outlier resistant
unsupervised deep architectures for attributed network embedding,” in
Proc. 13th Int. Conf. Web Search Data Mining, Jan. 2020, pp. 25–33.

[43] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” 2013, arXiv:1312.6203.
[Online]. Available: https://arxiv.org/abs/1312.6203

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: SYNERGISTIC APPROACH FOR GRAPH ANOMALY DETECTION 13

[44] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral fil-
ters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97–109, Jan. 2019.

[45] K. Ding, Y. Li, J. Li, C. Liu, and H. Liu, “Feature interaction-aware
graph neural networks,” 2019, arXiv:1908.07110. [Online]. Available:
https://arxiv.org/abs/1908.07110

[46] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah, “Data
augmentation for graph neural networks,” in Proc. AAAI Conf. Artif.
Intell., 2021, pp. 11015–11023.

[47] T. Zhao, G. Liu, D. Wang, W. Yu, and M. Jiang, “Counterfactual
graph learning for link prediction,” 2021, arXiv:2106.02172. [Online].
Available: https://arxiv.org/abs/2106.02172

[48] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous
graph neural networks for malicious account detection,” in Proc. 27th
ACM Int. Conf. Inf. Knowl. Manage., 2018, pp. 2077–2085.

[49] S. Zhang, H. Yin, T. Chen, Q. V. N. Hung, Z. Huang, and L. Cui, “GCN-
based user representation learning for unifying robust recommendation
and fraudster detection,” 2020, arXiv:2005.10150. [Online]. Available:
https://arxiv.org/abs/2005.10150

[50] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
graph neural network-based fraud detectors against camouflaged fraud-
sters,” in Proc. 29th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2020,
pp. 315–324.

[51] K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed
networks,” in Proc. 12th ACM Int. Conf. Web Search Data Mining, 2019,
pp. 357–365.

[52] K. Ding, J. Li, N. Agarwal, and H. Liu, “Inductive anomaly detection
on attributed networks,” in Proc. 29th Int. Joint Conf. Artif. Intell., 2020,
pp. 1288–1294.

[53] T. Zhao, B. Ni, W. Yu, and M. Jiang, “Early anomaly detection by
learning and forecasting behavior,” 2020, arXiv:2010.10016. [Online].
Available: https://arxiv.org/abs/2010.10016

[54] T. Zhao, C. Deng, K. Yu, T. Jiang, D. Wang, and M. Jiang, “Error-
bounded graph anomaly loss for GNNs,” in Proc. 29th ACM Int. Conf.
Inf. Knowl. Manage., Oct. 2020, pp. 1873–1882.

[55] B. Dong et al., “Anomalous event sequence detection,” IEEE Intell. Syst.,
vol. 36, no. 3, pp. 5–13, May 2021.

[56] G. Pang, C. Shen, L. Cao, and A. Hengel, “Deep learning for anomaly
detection: A review,” ACM Comput. Surv., vol. 54, no. 2, pp. 1–38, 2021.

[57] V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using
K-nearest neighbour graph,” in Proc. 17th Int. Conf. Pattern Recognit.
(ICPR), Aug. 2004, pp. 430–433.

[58] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos, “Neighborhood
formation and anomaly detection in bipartite graphs,” in Proc. IEEE
Int. Conf. Data Mining (ICDM), Nov. 2005, p. 8.

[59] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “SpotLight: Detect-
ing anomalies in streaming graphs,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 1378–1386.

[60] G. Pang, L. Cao, L. Chen, and H. Liu, “Learning representations of
ultrahigh-dimensional data for random distance-based outlier detection,”
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Jul. 2018, pp. 2041–2050.

[61] T. Zhao, M. Malir, and M. Jiang, “Actionable objective optimization for
suspicious behavior detection on large bipartite graphs,” in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2018, pp. 1248–1257.

[62] N. Shah, “FLOCK: Combating astroturfing on livestreaming platforms,”
in Proc. 26th Int. Conf. World Wide Web, Apr. 2017, pp. 1083–1091.

[63] H. Nilforoshan and N. Shah, “SliceNDice: Mining suspicious multi-
attribute entity groups with multi-view graphs,” in Proc. IEEE Int. Conf.
Data Sci. Adv. Analytics (DSAA), Oct. 2019, pp. 351–363.

[64] K. Shin, B. Hooi, and C. Faloutsos, “M-zoom: Fast dense-block detec-
tion in tensors with quality guarantees,” in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discovery Databases, 2016, pp. 264–280.

[65] S. Bhatia, A. Jain, P. Li, R. Kumar, and B. Hooi, “MSTREAM: Fast
anomaly detection in multi-aspect streams,” 2020, arXiv:2009.08451.
[Online]. Available: https://arxiv.org/abs/2009.08451

[66] S. Bhatia, B. Hooi, M. Yoon, K. Shin, and C. Faloutsos, “Midas:
Microcluster-based detector of anomalies in edge streams,” in Proc.
AAAI Conf. Artif. Intell., 2020, pp. 3242–3249.

Tong Zhao received the B.S. degree from
Case Western Reserve University, Cleveland, OH,
USA, in 2017. He is currently pursuing the Ph.D.
degree with the University of Notre Dame, Notre
Dame, IN, USA.

His research focuses on graph machine learn-
ing computational behavior modeling and anomaly
detection.

Tianwen Jiang received the B.E. and Ph.D. degrees
from the Department of Computer Science and
Technology, Harbin Institute of Technology (HIT),
Harbin, China, in 2016 and 2021, respectively.

The work of this article was done when he
was a Ph.D. candidate with HIT. He is currently
a Researcher with Tencent Inc., Shenzhen, China.
He has authored or coauthored more than ten articles
on natural language processing and knowledge graph
in top conferences and journals of the relevant field
such as IEEE/ACM TRANSACTIONS ON COMPU-

TATIONAL BIOLOGY AND BIOINFORMATICS (TCBB), IEEE TRANSAC-
TIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE), ACM SIGKDD,
EMNLP, IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), and ACM Conference on Information and Knowledge Management
(CIKM). His research focuses on knowledge mining and structuring from
massive text corpora.

Neil Shah received the Ph.D. degree in computer
science from the Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA,
in 2017.

He is a Research Scientist with Snap Inc., Seattle,
WA, USA, with interests in data mining, machine
learning, and computational social science on online
platforms, with special focus on graph-based model-
ing for user behavior and misbehavior. His work has
resulted in 35+ conference and journal publications,
in top venues such as KDD, ICDM, WWW, SDM,

DSAA, PAKDD, TKDD, and more, including several best-paper awards.
He has also served as an organizer, chair, and on program committees at
a number of these. He has had previous research experiences with Lawrence
Livermore National Laboratory, Livermore, CA, USA; Microsoft Research,
Redmond, WA; and Twitch.tv, San Francisco, CA, USA.

Meng Jiang received the bachelor’s and Ph.D.
degrees from Tsinghua University, Beijing, China,
in 2010 and 2015, respectively.

He spent two years in University of Illinois at
Urbana-Champaign (UIUC), Champaign, IL, USA,
as a Post-Doctoral Researcher and joined Univer-
sity of Notre Dame (ND), Notre Dame, IN, USA,
in 2017, where he is currently an Assistant Profes-
sor with the Department of Computer Science and
Engineering. He has authored or coauthored more
than 100 peer-reviewed articles of these topics. His

research interests include data mining, machine learning, and natural language
processing.

Dr. Jiang was a recipient of the Notre Dame International Faculty Research
Award. The honors and awards he received include Best Paper Finalist in KDD
2014, Best Paper Award in KDD-DLG workshop 2020, and ACM SIGSOFT
Distinguished Paper Award in ICSE 2021.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on April 01,2022 at 20:52:13 UTC from IEEE Xplore.  Restrictions apply. 


