Actionable Objective Optimization for Suspicious Behavior Detection on Large Bipartite Graphs

Tong Zhao, Matthew Malir, Meng Jiang

DM2 Laboratory Computer Science and Engineering University of Notre Dame

Suspicious Behavior on Bipartite Graph

- Bot followers in social networks.
- Bully buyers in e-commercial platforms.

温馨提示

近期部分用户存在不当评价行为(如发 布QQ群/微信等广告、索要好评返 现),淘宝已禁止其发布评价,严重者 查封账号。

反映真实消费体验的文字,图片的评价才能有 效提升淘气值哦!

知道了

Notice:

Recently, there are some customers making improper evaluations and comments like posting ads or asking for cashbacks. Taobao.com has banned them from posting any comments.

Suspicious Behavior on Bipartite Graph

- Bot followers in social networks.
- Bully buyers in e-commercial platforms.
- Behavior: source users → target users.
- Source users: followers, buyers.
- Target users: followees, sellers.

Key Observation/Assumption

• Fraudsters' avoiding effort forms dense blocks.

Key Observation/Assumption

• Fraudsters' avoiding effort forms dense blocks.

Key Observation/Assumption

• Fraudsters' avoiding effort forms dense blocks.

Existing Methods

- Find a dense subgraph.
- Find the suspiciousness vector **u**.

$$\max_{u} J(\boldsymbol{A}_{sub}(\boldsymbol{u})) \quad (1) \quad \text{buyers}$$

$$J(A_{sub}) = \frac{e}{n_u \times n_v} \quad (2)$$

Does it work?

• Yes but NOT Actionable!

Does it work?

- Yes but NOT Actionable!
- Serious consequence of false positive.
 - An important email is thrown into spam.
 - A normal Twitter/Taobao account is banned.
- Double check the reported suspicious users?

Large size of data.

• Heavy human labor.

Tong Zhao

What is actionable?

Blocklist function

What is actionable?

- Blocklist function
- Blocking plug-ins.

What is actionable?

- Blocklist function
- Blocking plug-ins.

Observation

Rating matrix \boldsymbol{A}

Rating matrix \boldsymbol{A}

- Use platform's big data.
- Learn the best threshold for everyone.
- <u>Actionable Objective Optimization (AOO)</u>: find the threshold vector v.

• Calculate the indicator vectors.

$$c^{(u)} = \mathbf{B} \cdot \mathbf{1}_m \tag{4}$$

$$c^{(v)} = \mathbf{B} \cdot \mathbf{1}_n \tag{5}$$

$$s_{i}^{(u)} = \begin{cases} 1, & if \ c_{i}^{(u)} \ge \beta^{(u)}; \\ 0, & otherwise. \end{cases}$$
(6)
$$s_{j}^{(v)} = \begin{cases} 1, & if \ c_{j}^{(v)} \ge \beta^{(v)}; \\ 0, & otherwise. \end{cases}$$
(7)

• Find the size and sum of the block.

$$n_u = \mathbf{1}_n^T \cdot s^{(u)} \tag{8}$$

$$n_{v} = \mathbf{1}_{m}^{T} \cdot s^{(v)} \tag{9}$$

$$e = s^{(u)^T} \cdot \mathbf{B} \cdot s^{(v)} \quad (10)$$

Block indicator matrix \boldsymbol{B} (binary)

• Objective function that we want to maximize.

$$J_{d}(\boldsymbol{v}) = \frac{e}{n_{u} \times n_{v}}$$
(11)
$$= \frac{s^{(u)^{T}} \cdot \mathbf{B} \cdot s^{(v)}}{(\mathbf{1}_{n}^{T} \cdot s^{(u)})(\mathbf{1}_{m}^{T} \cdot s^{(v)})}$$
(12)

• Find the partial derivatives with respect to v.

$$\frac{\partial J_d}{\partial v_k} = \frac{1}{n_u n_v} \frac{\partial e}{\partial v_k} - \frac{e}{n_u^2 n_v} \frac{\partial n_u}{\partial v_k} - \frac{e}{n_u n_v^2} \frac{\partial n_v}{\partial v_k}$$
(13)

$$\frac{\partial n_u}{\partial \nu_k} = \sum_{i=1}^n \sum_{j=1}^m \frac{\partial n_u}{\partial B_{ij}} \frac{\partial B_{ij}}{\partial \nu_k}$$
(14)

$$= \alpha^{2} \sum_{i=1}^{n} s_{i}^{(u)} \left(1 - s_{i}^{(u)}\right) B_{ik} (1 - g(v_{k} - u_{i}))$$
(15)

NOTRE DAME

AOO

$$\frac{\partial n_{\nu}}{\partial \nu_{k}} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\partial n_{\nu}}{\partial B_{ij}} \frac{\partial B_{ij}}{\partial \nu_{k}}$$
(16)

$$= \alpha^2 s_k^{(v)} (1 - s_k^{(v)}) \sum_{i=1}^n B_{ik} (1 - g(v_k - u_i))$$
(17)

$$\frac{\partial e}{\partial v_k} = \sum_{i=1}^n \sum_{j=1}^m \frac{\partial e}{\partial B_{ij}} \frac{\partial B_{ij}}{\partial v_k} \tag{18}$$

$$= \alpha^{2} \sum_{i=1}^{n} s_{i}^{(u)} \left(1 - s_{i}^{(u)}\right) \sum_{q=1}^{m} B_{iq} s_{q}^{(v)} + n\alpha s_{k}^{(v)} \left(1 - s_{k}^{(v)}\right) \sum_{p=1}^{n} B_{pk} s_{p}^{(u)} + s_{k}^{(v)} \sum_{i=1}^{n} s_{i}^{(u)}$$
(19)

Sellers' thresholds vector

Experiments

- On both synthetic datasets and real-world datasets.
- Baselines:
 - SpokEn (Prakash, et al., 2010)
 - CatchSync (Jiang, et al., 2014)
 - Fraudar (Hooi, et al., 2016)
 - Actionable version of each of them.

Actionable Version Baselines

Average rating

Actionable Version Baselines

Seller *j* $v_i = 1.5$ Average rating

Actionable Version Baselines

Synthetic Data

Experiment Results

Sparse blocks

 $\dot{20}$

Experiment Results

- Changing the attack density.
- Number of blocks = 3.

Real-word Dataset

- Amazon reviews in 2015.
- 4,552 users (buyers).
- 6,347 products (sellers).
- 231,600 ratings with reviews.

Observations on Real-word Dataset

Observation on the Results

Conclusions

- Revisited the problem of suspicious behavior detection from the perspective of individuals.
- Proposed a novel Actionable Objective Optimization (AOO) method that finds actionable solution of preventing fraud behaviors to happen.
- Experimental results showed that AOO is effective and efficient.

Thank you!

• Any questions?

Synthetic Experiment Results

- Quadratic time complexity.
- $O(mn_rt)$.
 - *m*: number of users.
 - n_r : number of ratings.
 - *t*: number of iterations.

